Space Science Reviews

, Volume 116, Issue 1–2, pp 171–184

Formation and Evolution of Titan’s Atmosphere

Article

Abstract

The origin and evolution of Titan’s enigmatic atmosphere is reviewed. Starting with the present-day volatile inventory, the question of what was the original composition on Titan and how a satellite of similar size to other Galilean moons managed to acquire and hold on to the required material is discussed. In particular the possible sources and sinks of the main mother molecules (nitrogen, methane and oxygen) are investigated in view of the most recent models and laboratory experiments. The answers expected to be provided by the instruments aboard the Cassini-Huygens mission to some of the most prominent current questions regarding Titan’s atmosphere are defined.

Keywords

Satellites Titan atmospheres Solar System infrared space missions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, E. and Grevesse, N.: 1989, ‘Abundances of the elements: meteoritic and solar’, Geochim. Cosmochim. Acta 53, 197–214.CrossRefGoogle Scholar
  2. Balsiger, H., Altwegg, K., and Geiss, J.: 1995, ‘D/H and 18O/16O ratio in the hydronium ions and neutral water from in situ measurements in comet Halley’, J. Geophys. Res. 100, 5827–5834.CrossRefGoogle Scholar
  3. Bar-Nun, A., Herman, G., Laufer, D., and Rappaport, M.L.: 1985, ‘Trapping and release of gases by water ice and implications for icy bodies’, Icarus 63, 317–332.CrossRefGoogle Scholar
  4. Bar-Nun, A., Kleinfeld, I., and Ganor, E.: 1988, ‘Shape and optical properties of aerosols formed by photolysis of acetylene, ethylene and hydrogen cyanide’, J. Geophys. Res. 93, 8383–8387.Google Scholar
  5. Bézard, B., Marten, A., and Paubert, G.: 1993, ‘Detection of Acetonitrile on Titan’, Bull. Am. Astron. Soc. 25, 1100 (abstract).Google Scholar
  6. Bockelée-Morvan, D., et al.: 1998, ‘Deuterated water in Comet C/1996 B2 (Hyakutake) and its implication for the origin of comets’, Icarus 133, 147–162.CrossRefGoogle Scholar
  7. Coustenis, A., Bézard, B., Gautier, D., Marten, A., and Samuelson, R.: 1991, ‘Titan’s atmosphere from Voyager infrared observations: III. The vertical distributions of hydrocarbons and nitriles near Titan’s North pole’, Icarus 89, 152–167.CrossRefGoogle Scholar
  8. Coustenis, A., Salama, A., Lellouch, E., Encrenaz, Th., Bjoraker, G., Samuelson, R.E., de Graauw, Th., Feuchtgruber, H., Kessler, M.F.: 1998, ‘Evidence for water vapor in Titan’s atmosphere from ISO/SWS data’, Astron. Astroph. 336, L85–L89.Google Scholar
  9. Coustenis, A. and Taylor, F.: 1999, Titan: the Earth-like Moon, WSP Publishers Eds, Singapore.Google Scholar
  10. Coustenis, A., Salama, A., Schulz, B., Ott, S., Lellouch, E., Encrenaz, Th., Gautier, D., and Feuchtgruber, H.: 2003, ‘Titan’s atmosphere from ISO mid-infrared spectroscopy’, Icarus 161, 383–403.CrossRefGoogle Scholar
  11. de Bergh, C., Lutz, B. L., Owen, T., and Chauville, J.: 1988, ‘Monodeuterated methane in the outer Solar Ssytem. III. Its abundance on Titan’, Astrophys. J. 329, 951–955.CrossRefGoogle Scholar
  12. Eberhardt, P., Reber, M., Krankowsky, D., Hidges, R. : 1995, ‘The D/H and 18O/16O ratios in water from comet P/Halley’, Astron. Astrophys. 302, 301–316.Google Scholar
  13. Farinella, P., Marzari, F., and Matteoli, S.: 1997, ‘The disruption of Hyperion and the origin of Titan’s atmosphere’, Astron. J. 113, 2312–2316.CrossRefGoogle Scholar
  14. Feuchtgruber, H., Lellouch, E., de Graauw, Th., Bézard, B., Encrenaz, T., and Griffin, M.: 1997, ‘External supply of oxygen to the atmospheres of the giant planets’, Nature 389, 159–162.CrossRefPubMedGoogle Scholar
  15. Flasar, F.M., et al.: 2004, ‘Temperatures, winds and composition in the Saturn system’, Science, in press.Google Scholar
  16. Gautier, D.: 1997, ‘The aeronomy of Titan’, ESA SP-1177.Google Scholar
  17. Gautier, D. and Raulin, F.: 1997, ‘Chemical composition of Titan’s atmosphere’, in A. Wilson (ed.), Huygens: Science, Payload and Mission, ESA Special report SP-1177, 359–364.Google Scholar
  18. Gautier, D. and Hersant, F.: 2005, ‘Formation and composition of planetesimals: trapping volatiles by clathration’, this volume.Google Scholar
  19. Geiss, J. and Gloecker, G.: 1998, ‘Abundances of deuterium and helium-3 in the proto-solar cloud’, Space Sci. Rev. 82, 239–250.CrossRefGoogle Scholar
  20. Griffith, C.A. and Zahnle, K.: 1995, ‘Influx of cometary volatiles to planetary moons: the atmospheres of 1000 possible Titans’, J. Geophys. Res. 100, 16,907–16,922.Google Scholar
  21. Gurwell, M.A. and Muhlemann, D.O.: 2000, ‘CO on Titan: more evidnece for a well-mixed vertical profile’, Icarus 145, 653–656.CrossRefGoogle Scholar
  22. Hersant, F., Gautier, D., and Lunine, J.I.: 2004, ‘Enrichments in volatiles in the giant planets of the Solar System’, Plan. Space Sci. 52, 623–624.CrossRefGoogle Scholar
  23. Hidayat, T. and Marten, A.: 1998, ‘Evidence for a strong 15N/14N enrichment in Titan’s atmosphere from millimeter observations’, Icarus 126, 170–182.CrossRefGoogle Scholar
  24. Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen T., Matthews, H.E., and Paubert, G.: 1997, ‘Millimeter and submillimeter observations of Titan: retrieval of the vertical profile of HCN and the 12C/13C ratio’, Icarus 126, 170–182.CrossRefGoogle Scholar
  25. Iro, N., Gautier, D., Hersant, F., Bockelée-Morvan, D., and Lunine, J.I.: 1997, ‘An interpretation of the nitrogen deficiency in comets’, Icarus 161, 511–532.CrossRefGoogle Scholar
  26. Lammer, H., Stumptner, W., Molina-Cuberos, G.J., Bauer, S.J., and Owen, T.: 2000, ‘Nitrogen isotope fractionation and its consequence for Titan’s atmospheric evolution’, Plan. Space Sci. 48, 529–543.CrossRefGoogle Scholar
  27. Lara, L.M, Lellouch, E., López-Moreno, J.J., Rodrigo, R.: 1996, ‘Vertical Distribution of Titan’s Atmospheric Neutral Constituents’, J. Geophys. Res. 101, 23,262–23,283.Google Scholar
  28. Lécluse, C. and Robert, F.: 1994, ‘Hydrogen istope exchange rates: origin of water in the inner solar sytem’, Geochim. Cosmochim. Acta 58, 2297–2939.Google Scholar
  29. Lécluse, C., Robert, F., Gautier, D., and Guiraud, M.: 1996, ‘Deuterium enrichment in giant planets’, Plan. Space Sci. 44, 1579–1592.CrossRefGoogle Scholar
  30. Lellouch, E., Bézard, B., Fouchet, T., Feuchtgruber, H., Encrenaz, T., and de Graauw, T.: 2001, ‘The deuterium abundance in Jupiter and Saturn from ISO-SWS observatons’, Astron. Astrophys. 370, 610–622.CrossRefGoogle Scholar
  31. Lellouch, E., Coustenis, A., Sebag, B., Cuby, J.-G., López-Valverde, M., Fouchet, Th., Crovisier, J., and Schmitt, B.: 2003, ‘Titan’s 5-micron window: observations with the Very Large Telescope’, Icarus 162, 156–169.CrossRefGoogle Scholar
  32. López-Valverde, M.A., Lellouch, E., and Coustenis, A.: 2004, ‘Carbon monoxide fluorescence from Titan’s atmosphere’, Icarus, submitted.Google Scholar
  33. Lorenz, R.D., McKay, C.P., and Lunine, J.I.: 1997, ‘Photochemically-induced collapse of Titan’s atmosphere’, Science 275, 642–644.CrossRefPubMedGoogle Scholar
  34. Lunine, J. and Tittemore, W.C.: 1993, ‘Origins of outer-planet satellites’, in E.H. Levy and J.L. Lunine (eds.), Protostars and Planets III, University of Arizona Press, pp. 1177–1252.Google Scholar
  35. Lunine, J.I. and Stevenson, D.J.: 1987, ‘Clathrate and ammonia hydrates at high pressure: Application to the origin of methane on Titan’, Icarus 70, 61–77.CrossRefGoogle Scholar
  36. Lunine, J.I., Yung, Y.I., and Lorenz, R.D.: 1999, ‘On the volatile inventory of Titan from isotope abundances in nitrogen and methane’, Plan. Space Sci., 47, 1291–1303.CrossRefGoogle Scholar
  37. Mahaffy, P.R., Donahue, T.M., Atreya, S.K., Owen, T.C., and Niemann, H.B.: 1998, ‘Galileo probe measurements of D/H and 3He/4He in Jupiter’s atmosphere’, Space Sci. Rev. 84, 251–263.CrossRefGoogle Scholar
  38. Marten, A., Hidayat, T., Moreno, R., Paubert, G., Bézard, B., Gautier, D., and Owen, T.: 1997, ‘Saturn VI (Titan)’, in D.W.E. Green (ed.), IAU Circular 6702, 19 July.Google Scholar
  39. Meier, R., Owen, T.C., Matthews, H.E., Jewitt, D.C., Bockelée-Morvan, D., Biver, N., Crovisier, J., and Gautier, D.: 1998a, ‘A determination of the HDO/H2O ratio in comet C/1995 01 (Hale- Bopp)’, Science 279, 842–844.CrossRefGoogle Scholar
  40. Meier, R., Owen, T.C., Jewitt, D.C., Matthews, H. E., Senay, M., Biver, N., Bockelée-Morvan, D., Crovisier, J., and Gautier, D.: 1998b, ‘Deuterium in Comet C/1995 01 (Hale-Bopp): detection of DCN’, Science 279, 1707–1710.CrossRefGoogle Scholar
  41. Mousis, O., Gautier, D., and Bockelée-Morvan, D.: 2002a, ‘An evolutionary turbulent model of Saturn’s subnebula: Implications for the origin of the atmosphere of Titan’, Icarus 156, 162–175.CrossRefGoogle Scholar
  42. Mousis, O., Gautier, D., and Coustenis, A.: 2002b, ‘The D/H ratio in methane in Titan. Origin and history’, Icarus 159, 156–169.CrossRefGoogle Scholar
  43. Orton, G.: 1992, ‘Ground-based observations of Titan’s thermal spectrum’, in B. Kaldeich (ed.), Symposium on Titan, ESA-SP 338, 81–85.Google Scholar
  44. Owen, T.C.: 1982, ‘The composition and origin of Titan’s atmosphere’, Plan. Space Sci. 30, 833–838.CrossRefGoogle Scholar
  45. Owen, T. and Bar-Nun, A.: 1995, ‘Comets, impacts, and atmospheres’, Icarus 116, 215–226.CrossRefPubMedGoogle Scholar
  46. Owen, T., Biver, N., Marten, A., Matthews, H., and Meier, R.: 1999, IAU Circ. 703, 11 November.Google Scholar
  47. Owen T.C.: 2000, ‘The origin of Titan’s atmosphere’, Plan. Space Sci. 48, 747–752.CrossRefGoogle Scholar
  48. Penz, T., Lammer, H., Yu. N. Kulikov, and Biernat, H.K.: 2004, ‘The influence of the solar particle and radiation environment on Titan’s atmosphere evolution’, Adv. Space Res., submitted.Google Scholar
  49. Pinto, J.P, Lunine, J.I., Kim, S.J., and Yung, Y.L.: 1986, ‘D to H ratio and the origin and evolution of Titan’s atmosphere’, Nature 319, 388–390.CrossRefPubMedGoogle Scholar
  50. Prinn, R.G. and Fegley, B.Jr.: 1981, ‘Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae – Implications for satellite composition’, Astrophys. J. 249, 308–317.CrossRefGoogle Scholar
  51. Samuelson, R.F., Maguire, W.C., Hand, R.A., Kunde, V.G., Jennings, D.F., Yung, Y.L., and Aikin, A.C.: 1983, ‘CO2 on Titan’, J. Geophys. Res. 88, 8709–8715.Google Scholar
  52. Samuelson, R.E. and Mayo, L.A. : 1997, ‘Steady-state model for methane condensation in Titan’s troposphere’, Planet. Space Sci. 45, 949–958.CrossRefGoogle Scholar
  53. Samuelson, R.E., Nath, N.R., and Borysow, A.: 1997a, ‘Gaseous abundances and methane supersaturation in Titan’s troposphere’, Planet. Space Sci. 45, 959–980.CrossRefGoogle Scholar
  54. Samuelson, R.E., Mayo, L.A., Knuckles, M.A., and Khanna, R.J.: 1997b, ‘C4N2 ice in Titan’s north polar stratosphere’, Planet. Space Sci. 45, 941–948.CrossRefGoogle Scholar
  55. Stevenson, D. J.: 1992, ‘Interior of Titan’, in B. Kaldeich (ed.), Symposium on Titan, ESA-SP 338, 29–33.Google Scholar
  56. Strobel, D.F.: 2004, ‘Photochemistry in outer solar system atmospheres’, this volume.Google Scholar
  57. Wong, A., Morgan, C.G., Yung, Y.L., and Owen, T.C.: 2000, ‘Evolution of CO on Titan’, Icarus 155, 382–392.CrossRefGoogle Scholar
  58. Zahnle, K., Pollack, J.B., Grinspoon, D., and Dones, L.: 1992, ‘Impact Generated Atmospheres over Titan, Ganymede and Callisto’, Icarus 95, 1–23.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.LESIA, Paris-Meudon ObservatoryMeudon CedexFrance

Personalised recommendations