Space Science Reviews

, Volume 116, Issue 1–2, pp 137–154 | Cite as

Comparative Study of the Dynamics of the Outer Planets

Article

Abstract

The two classes of outer planets, Gas Giants and Ice Giants, have distinctly different global circulation patterns and internal structure. Ongoing ground-based observations of the Ice Giants provide clues to better understanding and Galileo and Cassini data will generate constraints for Gas Giant modeling. The composition below the cloud levels, the depths to which the winds penetrate and the processes that sustain the zonal winds and weather systems are not understood. Basic questions concerning the structure, composition and atmospheric dynamics that are sustained on the four giants could be answered by a combination of orbiters and probes. Future missions that could answer these questions are not currently under development.

Keywords

giant planets atmospheres composition proto-planetary disk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achterberg, R.K., Conrath, B.J., Gierasch, P.J., and Flasar, F.M.: 2003, ‘Cassini CIRS Observations of Ammonia in Jupiter’s Upper Troposphere’, BAAS 34, 900.Google Scholar
  2. Alexander, A.F.O.: 1965, The planet Uranus: The history of observation, theory and discovery, Faber and Faber, London.Google Scholar
  3. Atkinson, D.H., Pollack, J.B., and Seiff, A.: 1998, ‘The Galileo probe Doppler Wind Experiment: Measurement of the deep zonal winds on Jupiter’, J. Geophys. Res. 103, 22911–22928.CrossRefGoogle Scholar
  4. Baines K.H., Carlson, R.W., and Kamp, L.W.: 2002, ‘Fresh ammonia ice clouds in Jupiter I. spectroscopic identification, spatial distribution, and dynamical implications’, Icarus 159, 74–94.CrossRefGoogle Scholar
  5. Banfield, D., Gierasch, P.J., Bell, M., Ustinov, E., Ingersoll, A.P., Vasavada, A.R., West, R.A., and Belton, M.J.S.: 1998, ‘Jupiter’s cloud structure from Galileo imaging data’, Icarus 135, 230–250.CrossRefGoogle Scholar
  6. Barnet, C.D., Westphal, J.A., Beebe, R.F., and Huber, L: 1992, ‘Hubble Space Telescope observations of the 1990 Equatorial Disturbance on Saturn:Winds and CentralMeridian Albedos’, Icarus 100, 499–511.CrossRefGoogle Scholar
  7. Beatty, J.K., Peterson, C.C., and Chaikin, A. (eds): 1999, The New Solar System, 4 th Edition, Cambridge University Press, London.Google Scholar
  8. Beebe, R.F., Barnet, C., Sada, P.V., and Murrell, A.S.: 1992, ‘The onset and growth of the 1990 equatorial Disturbance on Saturn’, Icarus 95, 163–172.CrossRefGoogle Scholar
  9. Borucki, W.J., Bar-Nun, A., Scarf, F.L., Cook, A.F., and Hunt, G.E.: 1982, ‘Lightning activity on Jupiter’, Icarus 52, 492–502.CrossRefGoogle Scholar
  10. Chase, S.C., Ruiz, R.D., Munch, G., Neugebauer, G., Schroeder, G., and Trafton, L.M.: 1974, ‘Pioneer 10 infrared radiometer experiment: preliminary results’, Science 183, 315–317.Google Scholar
  11. Conrath, B.J., Flasar, F.M., Pirraglia, J.A., Gierasch, P.J., and Hunt, G.E.: 1981, ‘Thermal structure and dynamics of the Jovian atmosphere. 2. Visible cloud features’, J. Geophys. Res. 86, 8769–8775.Google Scholar
  12. Conrath, B.J. and Gierasch, P.J.: 1984, ‘Global variation of the para hydrogen fraction in Jupiter’s atmosphere and implications for dynamics on the outer planets’, Icarus 57, 184–204.CrossRefGoogle Scholar
  13. Conrath, B.J., Pearl, J.C., Appleby, J.F., Lindal, G.F., Orton, G.S., and Bezard, B.: 1991, ‘Thermal structure and energy balance of Uranus’, in J. Bergstrahl, E. Miner, and M. Matthews (eds.), Uranus, Univ. of Arizona Press, Tucson, pp. 204–252.Google Scholar
  14. Edgington, S.G., West, R.A., Friedson, A.J., and Atreya, S.K.: 2000, ‘A 2-D photochemical model with meridional circulation’, BAAS 32, 1013.Google Scholar
  15. Gierasch, P.J., Ingersoll, A.P., Banfield, D., Ewald, S.P., Helfenstein, P., Simon-Miller, A., Vasavada, A., Breneman, H.H., Senske, D.A., and the Galileo Imaging team: 2000, ‘Observation of moist convection in Jupiter’s atmosphere’, Nature 403, 628–630.CrossRefPubMedGoogle Scholar
  16. Hammel, H.B., Beebe, R.F., de Jong, E.M., Hansen, C.J., Howell, C.D., Ingersoll, A.P., Johnson, T.V., Limaye, S.S., Magalhães, J.A., Pollack, J.B., Sromovsky, L.A., Suomi, V.E., and Swift, C.E.: 1989. ‘Neptune’s wind speeds obtained by tracking clouds in the Voyager images’, Science 245, 1367–1369.Google Scholar
  17. Hammel, H.B.: 1989, ‘Discrete cloud structure on Neptune’, Icarus 80, 14–22.CrossRefGoogle Scholar
  18. Hammel, H.B., Beebe, R.F., Ingersoll, A.P., Orton, G.S., Mills, J.R., Simon, A.A., Chodas, P., Clarke, J.T., De Jong, E., Dowling, T.E., Harrington, J., Huber, L.F., Karkoschka, E., Santori, C.M., Toigo, A., Yeomans D., and West R.A.: 1995, ‘HST imaging of atmospheric phenomena created by the impact of Comet Shoemaker-Levy 9’, Science 267, 1288–1296.PubMedGoogle Scholar
  19. Hammel, H.B., Rages, K., Lockwood, G.W., Karkoschka, E., and de Pater, I.: 2001, ‘New Measurements of the Winds of Uranus’, Icarus 153, 229–235.CrossRefGoogle Scholar
  20. Hofstadter, M.D. and Butler, B.J.: 2003, ‘Seasonal change in the deep atmosphere of Uranus’, Icarus 165, 168–180.CrossRefGoogle Scholar
  21. Ingersoll, A.P.: 1976, ‘The atmosphere of Jupiter’, Space Sci. Rev. 18, 603–639.Google Scholar
  22. Ingersoll, A.P., Beebe, R.F., Mitchell, J.L., Garneau, G.W., Yagi, G.M., and Muller J.P: 1981, ‘Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and Voyager 2 images’, J. Geophys. Res. 86, 8733–8743.Google Scholar
  23. Ingersoll, A.P. and H. Kanamori: 1995, ‘Waves from the collisions of Comet Shoemaker-Levy 9 with Jupiter’, Nature 374, 706–708.CrossRefPubMedGoogle Scholar
  24. Ingersoll, A.P., Gierasch, P.J., Banfield D., and Vasavada A.R.: 2000, ‘Moist convection as an energy source for the large-scale motions in Jupiter’s atmosphere’, Nature 403, 630–632.CrossRefPubMedGoogle Scholar
  25. Ingersoll, A.P., Dowling, T.E., Gierasch, P.J., Orton, G.S., Read, P.L., Sanchez-Lavega, A., Showman, A.P., Simon-Miller, A.A., and Vasavada, A.R.: 2004, ‘Dynamics of Jupiter’s Atmosphere’, in F. Bagenal, T. Dowling, and W. McKinnon (eds.), Jupiter: The Planet, Satellites and Magnetosphere, Cambridge University Press, London.Google Scholar
  26. Karkoschka, E.: 1998, ‘Clouds of High Contrast on Uranus’, Science 280, 570–572.CrossRefPubMedGoogle Scholar
  27. Lewis, J.S.: 1969, ‘The clouds of Jupiter and the NH3-H2O and NH3-H2S systems’, Icarus 10, 365–378.CrossRefGoogle Scholar
  28. Lindal, G.F., Wood, G.E., Levy, G.S., Anderson, J.D., Sweetnam, D.N., Hotz, H.B., Buckles, B.J., Holmes, D.P., Doms, P.E., Eshleman, V.R., Tyler, G.L., and Croft, T.A.: 1981, ‘The atmosphere of Jupiter: An analysis of the Voyager radio occultation measurements’, J. Geophys. Res. 86, 8721–8727.Google Scholar
  29. Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., and Hinson, D.P.: 1987, ‘The atmosphere of Uranus – Results of radio occultation measurements with Voyager 2’, J. Geophys. Res. 92, 14987–15001.Google Scholar
  30. Lockwood, G.W. and Thompson, D.T.: 1999, ‘Photometric variability of Uranus, 1972-1996’, Icarus 137, 2–12.CrossRefGoogle Scholar
  31. Lockwood, G.W. and Thompson, D.T.: 2002, ‘Photometric variability of Neptune, 1972-2000’, Icarus 156, 37–51.CrossRefGoogle Scholar
  32. Mitchell, J.L., Beebe, R.F., Ingersoll, A.P., and Garneau: 1981, ‘Flow fields within Jupiter’s Great Red Spot and White Oval BC’, J. Geophys. Res. 86, 8751–8757.Google Scholar
  33. Niemann, H.B., Atreya, S.K., Carignan, G.R., Donahue, T.M., Haberman, J.A., Harpold, D.N., Hartle, R.E., Hunten, D.M., Kasprzak, W.T., Mahaffy, P.R., Owen T.C., and Way, S.H.: 1998, ‘The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer’, J. Geophys. Res. 103, 22831–22845.CrossRefPubMedGoogle Scholar
  34. NRC Decadal Report Book #0-309-08495-4: 2003, New Frontiers of the Solar System: An Integrated Exploration Strategy, National Academies Press, Washington, D.C.Google Scholar
  35. Orton, G.S., Fisher, B.M., Baines, K.H., Stewart, S.T, Friedson, A.J., Ortiz, J.L., Marinova, M., Ressler, M., Dayal, A., Hoffmann, W., Hora, J., Hinkley, S., Krishnan, V., Masanovic, M., Tesic, J., Tziolas, A., and Parija, K.C.:1998, ‘Characteristics of the Galileo probe entry site from Earthbased remote sensing observations’, J. Geophys. Res. 103, 22791–22814.CrossRefGoogle Scholar
  36. Peek, B.M.: 1958, The Planet Jupiter, Faber and Faber, London.Google Scholar
  37. Porco, C.C., West, R.A., McEwen, A., Del Genio, A.D., Ingersoll, A.P., Thomas, P., Squyres, S., Dones, L., Murray, C.D., Johnson, T.V., Burns, J.A., Brahic, A., Neukum, G., Veverka, J., Barbara, J.M., Denk, T., Evans, M., Ferrier, J.J., Geissler, P., Helfenstein, P., Roatsch, T., Throop, H., Tiscareno, M., and Vasavada, A.R.: 2003, ‘Cassini imaging of Jupiter’s atmosphere, satellites, and rings’, Science 299, 1541–1547.CrossRefPubMedGoogle Scholar
  38. Russell, C.T. (ed.): 2002a, ‘The Cassini/Huygens Mission I’, Space Sci. Rev. 104, 1–640.Google Scholar
  39. Russell, C.T. (ed.): 2002b, ‘The Cassini/Huygens Mission II’, Space Sci. Rev. 104, 509–679.Google Scholar
  40. Sánchez-Lavega, A., Lecacheux, J., Colas, F., and Laques, P.: 1993, ‘Temporal behavior of cloud morphologies in Saturn’s atmosphere’, J. Geophys. Res 98, 18857–18872.Google Scholar
  41. Sánchez-Lavega, A., and Gomez, J.M.: 1996, ‘The South Equatorial Belt of Jupiter 1. Its Life Cycle’, Icarus 121, 1–17.CrossRefGoogle Scholar
  42. Sánchez-Lavega, A., Pérez-Hoyos, S., Rojas, J.F., Hueso, R., and French, R.G.: 2003, ‘A strong decrease in Saturn’s equatorial jet at cloud level’, Nature 423, 623–625.CrossRefPubMedGoogle Scholar
  43. Showman, A.P., and Dowling, T.E.: 2000, ‘Nonlinear simulations of Jupiter’s 5-μm hot spots’, Science 289, 1737–1740.PubMedGoogle Scholar
  44. Simon, A.A., Beebe, R.F., Gierasch, P.J., Vasavada A.R., and Belton M.J.S.: 1998, ‘Global context of the Galileo E6 observations of Jupiter’s White Ovals’, Icarus 135, 220–229.CrossRefGoogle Scholar
  45. Smith, B.A., Soderblom, L.A., Beebe, R., Bliss, D., Boyce, J.M., Brahic, A., Briggs, G.A., Brown. R.H., Collins, S.A., Cook, A.F., Croft, S.K., Cuzzi, J.N., Danielson, G.E., Davies, M.E., Dowling, T.E., Godfrey, D., Hansen, C.J., Harris, C., Hunt, G.E., Ingersoll, A.P., Johnson, T.V., Krauss, R.J., Masursky, H., Morrison, D., Owen, T., Plescia, J.B., Pollack, J.B., Porco, C.C., Rages, K., Sagan, C., Shoemaker, E.M., Sromovsky, L.A., Stoker, C., Strom, R.G., Suomi, V.E., Synnott, S.P., Terrile, R.J., Thomas, P., Thompson, W.R., and Veverka., J.: 1986, ‘Voyager 2 in the Uranian system - Imaging science results’, Science 233, 43–64.Google Scholar
  46. Smith, B.A., Soderblom, L.A., Banfield, D., Barnet, C., Basilevksy, A.T., Beebe, R.F., Bollinger, K., Boyce, J.M., Brahic, A., Briggs, G.A., Brown, R.H., Chyba, C., Collins, S.A., Colvin, T., Cook, A.F., Crisp, D., Croft, S.K., Cruikshank, D., Cuzzi, J.N., Danielson, G.E., Davies, M.E., De Jong, E., Dones, L., Godfrey, D., Goguen, J., Grenier, I., Haemmerle, V.R., Hammel, H., Hansen, C.J., Helfenstein, C.P., Howell, C., Hunt, G.E., Ingersoll, A.P., Johnson, T.V., Kargel, J., Kirk, R., Kuehn, D.I., Limaye, S., Masursky, H., McEwen, A., Morrison, D., Owen, T., Owen, W., Pollack, J.B., Porco, C.C., Rages, K., Rogers, P., D. Rudy, C., Sagan, C., Schwartz, J., Shoemaker, E.M., Showalter, M., Sicardy, B., Simonelli, D., Spencer, J., Sromovsky, L.A., Stoker, C., Strom, R.G., Suomi, V.E., Synott, S.P., R.J.,; P. Thomas, P., Thompson, W.R., Verbiscer, A., and Veverka, J.: 1989, ‘Voyager 2 at Neptune - Imaging science results’, Science 246, 1422–1449.Google Scholar
  47. Sromovsky, L.A., Best, F.A., Collard, A.D., Fry, P.M., Revercomb, H.E., Freedman, R.S., Orton, G.S., Hayden, J.L., Tomasko, M.G., and Lemmon, M.T.: 1996, ‘Solar and thermal radiation in Jupiter’s atmosphere: Initial results of the Galileo Probe Net Flux Radiometer’, Science 272, 851–854.PubMedGoogle Scholar
  48. Sromovsky, L.A., Fry, P.M., Dowling, T.E, Baines, K.H., and Limaye, S.S.: 2001, ‘Coordinated 1996 HST and IRTF imaging of Neptune and Triton III. Neptune’s atmospheric circulation and cloud structure’, Icarus 149, 459–488.CrossRefGoogle Scholar
  49. Stone, P.H.: 1976, ‘The meteorology of the Jovian atmosphere’, in T. Gehrels (ed.), Jupiter, University of Arizona Press, Tucson, 586–615.Google Scholar
  50. Vasavada, A.R., Ingersoll, A.P., Banfield, D., Bell, M., Gierasch, P.J., Belton, M.J.S., Orton, G.S., Klaasen, K.P., De Jong, E., Breneman, H.H., Jones, T.J., Kaufman, J.M.,Magee K.P., and Senske D.A.: 1998, ‘Galileo imaging of Jupiter’s atmosphere: The Great Red Spot, equatorial region, and White Ovals’, Icarus 135, 265–275.CrossRefGoogle Scholar
  51. Walterscheid, R.L., Brinkman D.G., and Schubert, G.: 2000, ‘Wave disturbances from the Comet SL-9 impacts into Jupiter’s atmosphere’, Icarus 145, 140–146.CrossRefGoogle Scholar
  52. Williams, G.P.: 1978, ‘Planetary circulations 1. Barotropic representation of Jovian and terrestrial turbulence’, J. Atmos. Sci. 35, 1399–1426.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of AstronomyNew Mexico State UniversityLas CrucesUSA

Personalised recommendations