Space Science Reviews

, Volume 115, Issue 1–4, pp 71–110 | Cite as

Radar: The Cassini Titan Radar Mapper

  • C. Elachi
  • M. D. Allison
  • L. Borgarelli
  • P. Encrenaz
  • E. Im
  • M. A. Janssen
  • W. T. K. Johnson
  • R. L. Kirk
  • R. D. Lorenz
  • J. I. Lunine
  • D. O. Muhleman
  • S. J. Ostro
  • G. Picardi
  • F. Posa
  • C. G. Rapley
  • L. E. Roth
  • R. Seu
  • L. A. Soderblom
  • S. Vetrella
  • S. D. Wall
  • C. A. Wood
  • H. A. Zebker
Article

Abstract

The Cassini RADAR instrument is a multimode 13.8 GHz multiple-beam sensor that can operate as a synthetic-aperture radar (SAR) imager, altimeter, scatterometer, and radiometer. The principal objective of the RADAR is to map the surface of Titan. This will be done in the imaging, scatterometer, and radiometer modes. The RADAR altimeter data will provide information on relative elevations in selected areas. Surfaces of the Saturn’s icy satellites will be explored utilizing the RADAR radiometer and scatterometer modes. Saturn’s atmosphere and rings will be probed in the radiometer mode only. The instrument is a joint development by JPL/NASA and ASI. The RADAR design features significant autonomy and data compression capabilities. It is expected that the instrument will detect surfaces with backscatter coefficient as low as −40 dB.

Keywords

Radar Data Compression Radar Mapper Principal Objective Altimeter Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, M., Godfrey, D. A., and Beebe, R.F.:1990,‘A wave dynamical interpretation of Saturn’s polar hexagon’,Science 247,1061–1063.Google Scholar
  2. Allison, M .,Del Genio, A. D., and Zhou,W.:1995,‘Richardson number constraints for the Jupiter and outer planet wind regime’, Geophys. Res. Lett. 22,2957–2960.Google Scholar
  3. Caldwell,J.,Cunningham,C.C.,Anthony,D., White, P.H., Groth, E. J., Hassan,H., et al.: 1992, ‘Titan: Evidence for seasonal change—a comparison of Hubble Space Telescope and Voyager images’, Icarus 96, 1–9.CrossRefGoogle Scholar
  4. Campbell, D. B., Head, J. W., Harmon, J. K., and Hine, A. A.: 1983, ‘Venus: Identification of banded terrain in the mountains of Ishtar Terra’, Science 221, 644–647.Google Scholar
  5. Downs, G. S., Reichley, P. E., and Green, R.R.:1975,‘Radar measurements of Martian topography and surface properties: The 1971 and 1973 oppositions’, Icarus 26, 273–312.Google Scholar
  6. Dubouloz, N.,Raulin, F., Lellouch, E., and Gautier,D.: 1989, ‘Titan’s hypothesized ocean properties: The influence of surface temperature and atmospheric composition uncertainties’, Icarus 82, 81–96.CrossRefGoogle Scholar
  7. Elachi, C.:1987, Introduction to the Physics and Techniques of Remote Sensing, New York: Wiley.Google Scholar
  8. Elachi,C.: 1988, SpaceborneRadar Remote Sensing:Applications and Techniques, New York: IEEE Press.Google Scholar
  9. Elachi, C.,Im, E., Roth, L. E., and Werner, C.L.:1991, ‘Cassini Titan Radar Mapper’, Proc. IEEE 79, 867–880.CrossRefGoogle Scholar
  10. Engel, S.,Lunine, J. I., and Hartmann, W. K.: 1995,‘Cratering on Titan and implications for Titan’s atmospheric history’, Planet. Space Sci. 43,1059–1066.Google Scholar
  11. Ford, P. G., and Pettengill, G. H.:1992,‘Venus topography and kilometer-scale slopes’, J. Geophys. Res. 97,13,103–13,114.Google Scholar
  12. Griffith, C. A.: 1993, ‘Evidence forsurface heterogeneity on Titan’, Nature 364, 511–514.CrossRefGoogle Scholar
  13. Griffith, C. A., Owen, T.,and Wagener, R.:1991,‘Titan’s surface and troposphere,investigated with ground-based, near-infrared observation’, Icarus 93,362–378.PubMedGoogle Scholar
  14. Grossman, A. W.: 1990, ‘Microwave imaging of Saturn’s deep atmosphere and rings’, Doctoral Dissertation,California Institute of Technology.Google Scholar
  15. Grossman, A. W., and Muhleman, D. O.:1992,‘Observation of Titan’s radio light-curve at3.5-cm’,Bull. Am. Astron. Soc. 24,954.Google Scholar
  16. Grossman, A.W., Muhleman, D. O., and Berge,G.L.:1989, ‘High-resolution microwave imaging of Saturn’,Science 245,1211–1215.Google Scholar
  17. Harmon, J.K., and Ostro,S.J.:1985,‘Mars:Dual-polarization radar observations with extended coverage’, Icarus 62(1985),110–128.Google Scholar
  18. Hensley, S., and Im, E.: 1993,‘SAR ambiguity study for the Cassini Radar’, Proceedings of IGARSS’93. Google Scholar
  19. Hubbard, W. B., and 45 others: 1993, ‘The occultation of 28 Sgr by Titan’, Astron.Astrophys. 269,541–563.Google Scholar
  20. Im, E., Johnson, W. T. K., and Hensley,S.:1993,‘Cassini Radar for remote sensing of Titan - design considerations’, Proceedings of IGARSS’93. Google Scholar
  21. Inge, J. L.,and Batson, R.M.: 1992, ‘Indexes of maps of the planets and satellites’, NASA TM 4395,96–98.Google Scholar
  22. Johnson, W. T. K.:1991, ‘Magellan imaging radar mission to Venus’, Proc. IEEE 79, 777.Google Scholar
  23. Kuiper, G.P.: 1944, ‘Titan: A satellite with an atmosphere’, Astrophys. J. 100,378–383.Google Scholar
  24. Kwok, R., and Johnson, W. T. K.: 1989,‘Block adaptive quantization of Magellan SAR data’, IEEE Trans. Geosci. Remote Sens. 27,375–383.CrossRefGoogle Scholar
  25. Lemmon, M. T., Karkoscka, E., and Tomasko, M.: 1993,‘Titan’s rotation: Surface feature observed’, Icarus 103, 329–332.CrossRefGoogle Scholar
  26. Lemmon, M. T.,Karkoscka, E., and Tomasko,M.:1995,‘Titan’s rotational light-curve’, Icarus 113,27–38.Google Scholar
  27. Lindal, G. F., Wood, G. E.,Hotz, H. B., Sweetnam, D.N., Eshleman, V. R., and Tyler, G. L.:1983,‘The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements’, Icarus 53, 348–363.CrossRefGoogle Scholar
  28. Lorenz, R. D.:1995a, ‘Raindrops on Titan’, Adv.Space Res. 15,(3)317–(3)320.Google Scholar
  29. Lorenz, R. D.: 1995b,‘Cassini mission:Radarsensing of craters on Titan’,Lunar Planet.Sci. XXVI,775–776.Google Scholar
  30. Lorenz, R. D., and Lunine,J.I.:1996,‘Erosion on Titan: Past and present’, Icarus 122,79-91.CrossRefGoogle Scholar
  31. Lorenz, R.D., Smith, P. H., Lemmon, M.T.,Karkoschka, E., Lockwood, G. W., and Caldwell, J.: 1997, ‘Titan’s north-south asymmetry from HST and Voyager imaging: Comparison with models and ground-based photometry’, Icarus 127,173–189.CrossRefGoogle Scholar
  32. Lunine, J. I.: 1993.‘Does Titan have an ocean? A review of current understanding of Titan’s surface’,Revs.Geophys. 31,133–149.CrossRefGoogle Scholar
  33. Lunine, J.I., and Rizk, B.: 1989, ‘Thermal evolution of Titan’s atmosphere’, Icarus 80,370–389.CrossRefGoogle Scholar
  34. Lunine, J. I., Stevenson, D. J., and Yung, Y. L.:1983, ‘Ethane ocean on Titan’, Science 222, 1229–1230.Google Scholar
  35. Mitchell, D. L., Ostro, S. J., Hudson,R.S.,Rosema,K.D., Campbell, D. B., Vélez, R., et al.: 1996, ‘Radar observations of asteroids 1 Ceres, 2 Pallas, and 4 Vesta’, Icarus 124, 113–133.Google Scholar
  36. Muhleman, D.O., Grossman, A. W., Butler, B. J., and Slade, M. A.: 1990,‘Radar reflectivity of Titan’, Science 248,975–980.Google Scholar
  37. Muhleman, D. O., Grossman, A. W., Slade, M. A., and Butler, B. J.: 1992, ‘The surface of Titan and Titan’s rotation: What is radar telling us?’, Bull.Am. Astron. Soc. 24, 954.Google Scholar
  38. Muhleman,D. O., Grossman, A. W., Slade, M. A., and Butler, B. J.: 1993,‘Titan’s radar reflectivity and rotation’, Bull. Am. Astron. Soc. 25, 1009.Google Scholar
  39. Muhleman, D. O., Grossman, A. W., and Butler, B.J.:1995, ‘Radar investigation of Mars, Mercury, and Titan’,Annu. Rev. Earth Planet. Sci. 23, 337–374.Google Scholar
  40. Ostro, S. J.: 1993, ‘Planetary Radar Astronomy’, Revs. Mod. Phys. 65, 1235–1279.Google Scholar
  41. Ostro, S. J., Campbell, D. B., Simpson, R. A.,Hudson, R. S., Chandler, J. F., Rosema, K. D., et al.: 1992, ‘Europa, Ganymede, and Callisto: New radar results from Arecibo and Goldstone’, J. Geophys. Res. 97, 18,227–18,244.Google Scholar
  42. Pettengill, G. H.: 31978, ‘Physical properties of the planets and satellites from radar observations’, Ann. Rev. Astron. Astrophys. 16, 265–292.Google Scholar
  43. Pettengill, G. H., Briscoe, H. W., Evans, J. V., Gehrels, E., Hyde, G. M., Kraft, L. G., Price, R., and Smith, W. B.: 1962, ‘A radar investigetion of Venus’, Astron. J. 67, 181–190.Google Scholar
  44. Pettengill, G. H., Ford, P. G., Johnson, W. T. K., Raney, K. R., and Soderblom, L. A.: 1991, ‘Magellan: Radar performance and data products’, Science 252, 260–265.Google Scholar
  45. Samuelson, R. E., and Mayo, L. A.: 1997, ‘Steady-state model for methane condensation in Titan’s troposphere’, Planet. Space Sci. 45, 949–958.CrossRefGoogle Scholar
  46. Saunders, R. S., and 26 others: 1992, ‘The Magellan Mission summary’, J. Geophys. Res. 97, 13,067–13,090.Google Scholar
  47. Sen, A. D., Anicich, V. G., and Arakelian, T.: 1992, ‘Dielectric constant of liquid alkanes and hydrocarbon mixtures’, J. Phys. D: Appl. Phys. 25, 516–521.Google Scholar
  48. Smith, P. H., and Lemmon, M. T.: 1993, ‘HST images of Titan’, Bull. Am. Astron. Soc. 25, 1105.Google Scholar
  49. Smith, P. H., Lemmon, M. T., Lorenz, R. D., Sromovsky, L. A., Caldwell, J. J., and Allison, M. D.: 1996, ‘Titan’s surface, revealed by HST images’, Icarus 119, 336–349.Google Scholar
  50. Straty, G. C., and Goodwin, R. D.: 1973, ‘Dielectric constant and polarizability of saturated and compressed fluid methane’, Cryogenics 13, 712–715.Google Scholar
  51. Thomson, W. R., and Squyres, S. W.: 1990, 1Titan and other icy satellites: Dielectric properties of constituent materials and implications for radar sounding’, Icarus 86, 336–354.Google Scholar
  52. Toon, O. B., McKay, C. P., Courtin, R., and Ackerman, T. P.: 1988, ‘Methane rain on Titan’, Icarus 75, 255–284.CrossRefGoogle Scholar
  53. Tyler, G. L., Eshleman, V. R., Anderson, J. D., Levy, G. S., Lindal, G. F., Wood, G. E., et al.: 1981, ‘Radio science investigations of the Saturn system with Voyager 1: Preliminary results’, Science 212, 201–206.Google Scholar
  54. Tyler, G. L., Simpson, R. A., Maurer, M. J., and Holman, E.: 1992, ‘Scattering properties of the Venusian surface: Preliminary results from Magellan’, J. Geophys. Res. 97, 13,115–13,139.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • C. Elachi
    • 1
  • M. D. Allison
    • 2
  • L. Borgarelli
    • 3
  • P. Encrenaz
    • 4
  • E. Im
    • 1
  • M. A. Janssen
    • 1
  • W. T. K. Johnson
    • 1
  • R. L. Kirk
    • 5
  • R. D. Lorenz
    • 6
  • J. I. Lunine
    • 6
  • D. O. Muhleman
    • 7
  • S. J. Ostro
    • 1
  • G. Picardi
    • 8
  • F. Posa
    • 9
  • C. G. Rapley
    • 10
  • L. E. Roth
    • 1
  • R. Seu
    • 8
  • L. A. Soderblom
    • 5
  • S. Vetrella
    • 11
  • S. D. Wall
    • 1
  • C. A. Wood
    • 12
  • H. A. Zebker
    • 13
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaU.S.A.
  2. 2.Goddard Institute for Space StudiesNational Aeronautics and Space AdministrationNew YorkU.S.A.
  3. 3.Alenia AerospazioRomeItaly
  4. 4.Observatoire de ParisMeudonFrance
  5. 5.U. S. Geological SurveyFlagstaffU.S.A.
  6. 6.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonU.S.A.
  7. 7.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaU.S.A.
  8. 8.Universit’a La SapienzaRomeItaly
  9. 9.Dip. Interateneo di FisicaPolitecnico di BariBariItaly
  10. 10.British Antarctic SurveyCambridgeU.K.
  11. 11.Facolt’a di IngegneriaNaplesItaly
  12. 12.University of North DakotaGrand ForksU.S.A.
  13. 13.Stanford UniversityStanfordU.S.A.

Personalised recommendations