Space Science Reviews

, Volume 114, Issue 1–4, pp 233–329 | Cite as

Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan

  • S. M. Krimigis
  • D. G. Mitchell
  • D. C. Hamilton
  • S. Livi
  • J. Dandouras
  • S. Jaskulek
  • T. P. Armstrong
  • J. D. Boldt
  • A. F. Cheng
  • G. Gloeckler
  • J. R. Hayes
  • K. C. Hsieh
  • W.-H. Ip
  • E. P. Keath
  • E. Kirsch
  • N. Krupp
  • L. J. Lanzerotti
  • R. Lundgren
  • B. H. Mauk
  • R. W. McEntire
  • E. C. Roelof
  • C. E. Schlemm
  • B. E. Tossman
  • B. Wilken
  • D. J. Williams
Article

Abstract

The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20RS (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 RS every 2–3 h (every ∼10 min from ∼20 RS). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.

Keywords

energetic neutral atoms gas – plasma interaction hot plasma composition magnetospheric imaging planetary magnetosphere Saturn magnetosphere space instrumentation trapped energetic charge particles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amsif, A.: 1996, Etude et modélisation de la production d’atomes énergétiques neutres dans l’exosphère de Titan, Ph. D. Thesis, P. Sabatier University, Toulouse, France.Google Scholar
  2. Amsif, A., Dandouras, J., and Roelof, E. C.: 1997, J. Geophys. Res. 102, 22169.Google Scholar
  3. Barbosa, D. D.: 1987, Icarus 72, 53.CrossRefGoogle Scholar
  4. Barbosa, D. D. and Eviatar, A.: 1986, Astrophys. J. 310, 927.Google Scholar
  5. Barbosa, D. D., Eviatar, A., and Siscoe, G. L.: 1984, J. Geophys. Res. 89, 3789.Google Scholar
  6. Baron, R. L., Owen, T., Connerney, J. E. P., Satoh, T., and Harrington, J.: 1996, Icarus 120/122, 437.CrossRefGoogle Scholar
  7. Barrow, C. H. and Desch, M. D.: 1989, Astron. Astro. Phys. 213, 495.Google Scholar
  8. Belcher, J. W.: 1983, in: Dessler, A. J. (ed.), Physics of the Jovian Magnetosphere, Cambridge University Press, Cambridge, UK and New York, p. 68.Google Scholar
  9. Broadfoot, A. L., Sandel, B. R., Shemansky, D. E., Holberg, J. B., Smith, G. R., Strobel, D. F., McConnell, J. C., Kumar, S., Hunten, D. M., Atreya, S. K., Donahue, T. M., Moos, H. W., Bertaux, L., Blamont, J. E., Pomphrey, R. B., and Linick, S.: 1981, Science 212, 206.Google Scholar
  10. Burns, J. A., et al. 1994, An Integrated Strategy for the Planetary Sciences: 1995–2010, Report of the Committee on Planetary and Lunar Exploration, Space Studies Board, National Research Council, Washington, DC.Google Scholar
  11. Carbary, J. F. and Krimigis, S. M.: 1982, Geophys. Res. Lett. 9, 420.Google Scholar
  12. Cheng, A. F.: 1986, J. Geophys. Res. 91, 4524.Google Scholar
  13. Cheng, A. F. and Krimigis, S. M.: 1989a, J. Geophys. Res. 94, 12003.Google Scholar
  14. Cheng, A. F. and Krimigis, S. M.: 1989b, Waite, J. H., Burch, J., Moore, R. (eds.),AGU Solar System Plasma Physics, p. 253.Google Scholar
  15. Cheng, A. F., Keath, E. P., Krimigis, S. M., Mauk, B. H., McEntire, R. W., Mitchell, D. G., Roelof, E. C., and Williams, D. J.: 1993, Remote Sens. Rev. 8, 101.Google Scholar
  16. Clarke, J. T.,et al.1996, Science 274, 404.Google Scholar
  17. Curtis, C. C. and Hsieh, K. C.: 1989, AGU Solar Syst. Plasma Phys., Geophys. Monogr. Ser. 54, 247.Google Scholar
  18. Dandouras, J. and Amsif, A.: 1999, Planet. Space Sci. 47, 1355.CrossRefGoogle Scholar
  19. Desch, M. D. and Barrow, C. H.: 1984, J. Geophys. Res. 89, 6819.Google Scholar
  20. Dessler, A. J.: 1983, Physics of the Jovian Magnetosphere, Cambridge University Press.Google Scholar
  21. Esposito, L. W., Cuzzi, J. N., Holberg, J. B., Marouf, E. A., Tyler, G. L., and Porco, C. C.: 1984, Gehrels, T., Matthews, M. S., (eds.), Saturn, The University of Arizona Press, Tucson, p. 463.Google Scholar
  22. Eviatar, A.: 1992, Adv. Space Res. 12(8), 367.CrossRefGoogle Scholar
  23. Eviatar, A., Mekler, Y., and Coroniti, F. V.: 1976, Astrophys. J. 205, 622.CrossRefGoogle Scholar
  24. Fisk, L. A., Schwadron, N. A., and Gloeckler, G.: 1997, Geophys. Res. Lett. 24, 93.CrossRefGoogle Scholar
  25. Gehrels, T.: 1976, Jupiter, University of Arizona Press, Tucson, Arizona.Google Scholar
  26. Geiss, J., Gloeckler, G., Fist, L. A. von Steiger, R.: 1995, J. Geophys. Res. 100, 23373.CrossRefGoogle Scholar
  27. Geiss, J., Gloeckler, G., Mall, U., von Steiger, R., Galvin, A. B., and Ogilvie, K. W.: 1994, Astron. Astrophys. 282, 924.Google Scholar
  28. Geiss, J.,et al.1992, Science 257, 1535.Google Scholar
  29. Gloeckler, G.: 1996, Space Sci. Rev. 78, 335.CrossRefGoogle Scholar
  30. Gloeckler, G. and Geiss, J.: 1998, Space Sci. Rev. 86(1–2), 127–159.CrossRefGoogle Scholar
  31. Gloeckler, G. and Geiss, J.: 1996, Nature 381, 210.CrossRefGoogle Scholar
  32. Gloeckler, G. and Hsieh, K. C.: 1979, Nucl. Inst. Methods 165, 537.CrossRefGoogle Scholar
  33. Gloeckler, G., Fisk, L. A., and Geiss, J.: 1997, Nature 386, 374.Google Scholar
  34. Gloeckler, G., Balsiger, H., Bürgi, A., Bochsler, P., Fisk, L. A., Galvin, A. B., Geiss, J., Gliem, F., Hamilton, D. C., Holzer, T. E., Hovestadt, D., Ipavich, F. M., Kirsch, E., Lundgren, R. A., Ogilvie, K. W., Sheldon, R. B., and Wilken, B.: 1995, Space Sci. Rev. 71, 79.Google Scholar
  35. Gloeckler, G., Jokipii, J. R., Giacalone, J., and Geiss, J.: 1994, Geophys. Res. Lett. 21, 1565.Google Scholar
  36. Gloeckler, G., Geiss, J., Balsiger, H., Fisk, L. A., Galvin, A. B., Ipavich, F. M., Ogilvie, K. W., von Steiger, R., and Wilken, B.: 1993, Science 261, 70.Google Scholar
  37. Goertz, C. K.: 1989, Waite, J. H., Burch, J. L., Moore, R. L. (eds.), AGU Solar System Plasma Physics, Geophysical Monograph Series Vol. 54, p. 427.Google Scholar
  38. Gurnett, D. A.,et al.1982, J. Geophys. Res. 87, 1395.Google Scholar
  39. Hilchenbach, M.et al.1998, Astophys. J. 503, 916.CrossRefGoogle Scholar
  40. Holzer, T. E.: 1977, Rev. Geophys. Space Phys. 15, 467.Google Scholar
  41. Hsieh, K. C. and Curtis, C. C.: 1989, Waite, J., Burch, J., Moore, R. L. (eds.), AGU Solar System Plasma Physics, p. 159.Google Scholar
  42. Hsieh, K. C. and Curtis, C. C.: 1988, Geophys. Res. Lett. 15, 772.Google Scholar
  43. Hsieh, K. C., Shih, K. L., Jokipii, J. R., and Gruntman, M. A.: 1992a, Astophys. J. 393, 756.CrossRefGoogle Scholar
  44. Hsieh, K. C., Shih, K. L., Jokipii, J. R., and Gruntman, M. A.: 1992b, Marsch, E., Schwenn, R., (eds.), Proceedings of the 3rd COSPAR Colloquium, p. 365.Google Scholar
  45. Hsieh, K. C., Sandel, B. R., Drake, V. A., King, R. S.: 1991, Nucl. Inst. Methods B61, 187.Google Scholar
  46. Hsieh, K. C., Keppler, E., and Schmidtke, G.: 1980, J. Appl. Phys. 51, 2242.Google Scholar
  47. Ip, W. H.: 1997, Icarus 126, 42.CrossRefGoogle Scholar
  48. Ip, W. H.: 1996, Astrophys. J. 457, 922.CrossRefGoogle Scholar
  49. Ip, W. H.: 1992, in: Proceedings of the Symposium on Titan, Toulouse, France, ESA SP-338, p. 243.Google Scholar
  50. Ip, W. H.: 1990, Astrophys. J. 362, 354.Google Scholar
  51. Ip, W. H.: 1984, J. Geophys. Res. 89, 2377.Google Scholar
  52. Ip, W. H., Williams, D. J., McEntire, R. W., and Mauk, B. H.: 1998, Geophys. Res. Lett. 25, 829.CrossRefGoogle Scholar
  53. Ip, W. H., Williams, D. J., McEntire, R. W., and Mauk, B. H.: 1997, Geophys. Res. Lett. 24, 2631.Google Scholar
  54. Ipavich, F. M., Lundgren, R. A., Lambird, B. A., and Gloeckler, G.: 1978, Nucl. Inst. Methods 154, 291.CrossRefGoogle Scholar
  55. Johnson, R. E.: 1990, Energetic Charged Particle Interactions with Atmospheres and Surfaces, Springer-Verlag, New York.Google Scholar
  56. Johnson, R. E., Pospieszalska, M., Sittler, E., Cheng, A. F., Lanzerotti, L. J., and Sieveka, E. M.: 1989, Icarus 77, 311.CrossRefGoogle Scholar
  57. Kaiser, M. L.: 1993, J. Geophys. Res. 98, 18757.Google Scholar
  58. Kirsch, E., Krimigis, S. M., Ip, W. H. Gloeckler, G.: 1981a, Nature 292, 718.Google Scholar
  59. Kirsch, E., Krimigis, S. M., Kohl, J. W., Keath, E. P.: 1981b, Geophys. Res. Lett. 8, 169.Google Scholar
  60. Krimigis, S. M.: 1992, Space Sci. Rev. 59, 167.CrossRefGoogle Scholar
  61. Krimigis, S. M.: 1986, Comparative Study of Magnetospheric Systems, CNES, LEPADUE Editions, Toulouse, France, Vol. 99.Google Scholar
  62. Krimigis, S. M. and Armstrong, T. P.: 1982, Geophys. Res. Lett. 9, 1143.Google Scholar
  63. Krimigis, S. M., Carbary, J. F., Keath, E. P., and Armstrong, T. P.: 1982a, EOS 1068.Google Scholar
  64. Krimigis, S. M., Armstrong, T. P., Axford, W. I., Bostrom, C. O., Gloeckler, G., Keath, E. P., Lanzerotti, L. J., Carbary, J. F., Hamilton, D. C., and Roelof, E. C.: 1982b, Science 215, 571.Google Scholar
  65. Krimigis, S. M., Carbary, J. F., Keath, E. P., Armstrong, T. P., Lanzerotti, L. J., and Gloeckler, G.: 1983, J. Geophys. Res. 88, 8871.Google Scholar
  66. Krimigis, S. M., Decker, R. B., Hamilton, D., and Gloeckler, G.: 2000, AIP Conf. Proc. 528, 333– 336.Google Scholar
  67. Krimigis, S. M., Zwickl, R. D., and Baker, D. N.: 1985, J. Geophys. Res. 90, 3947.Google Scholar
  68. Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Dandouras, J., Armstrong, T. P., Bolton, S. J., Cheng, A. F., Gloeckler, G., Hsieh, K. C., Keath, E. P., Krupp, N., Lagg, A., Lanzerotti, L. J., Livi, S., Mauk, B. H., McEntire, R. W., Roelof, E. C., Wilken, B., and Williams, D. J.: 2002, Nature 415, 994.PubMedGoogle Scholar
  69. Krimigis, S. M.,et al.1988, Planet. Space Sci. 36, 311.CrossRefGoogle Scholar
  70. Krupp, N., Woch, J., Lagg, A., Wilken, B., Livi, S., and Williams, D. J.: 1998, Geophys. Res. Lett. 25, 1249–1252.CrossRefGoogle Scholar
  71. Lagg, Andreas: 1998, Energiereiche Teilchen in der inneren Jupitermagnetosphaere: Simulation und Ergebnisse des EPD-Experimentes an Bord der Raumsonde GALILEO, Dissertation, Max-Planck-Institut fuer Aeronomie, Lindau/Harz, Germany, MPAE-W-807-98-01.Google Scholar
  72. Lee, M. A.: 1982, J. Geophys. Res. 87, 5063.Google Scholar
  73. Mall, U., Fichtner, H., Kirsch, E., Hamilton, D. C., and Rucinski, D.: 1998, Planet. Space Sci., 46, 1375–1382.CrossRefGoogle Scholar
  74. Mauk, B. H. and Krimigis, S. M.: 1987, J. Geophys. Res. 92, 9931.Google Scholar
  75. Mauk, B. H., Krimigis, S. M., Mitchell, D. G., Roelof, E. C., Keath, E. P., and Dandouras, J.: 1998, Planet. Space Sci. 46, 1349.CrossRefGoogle Scholar
  76. Mauk, B. H., Williams, D. J., and McEntire, R. W.: 1997a, Geophys. Res. Lett. 24, 2949.CrossRefGoogle Scholar
  77. Mauk, B. H., Williams, D. J., McEntire, R. W., Khurana, K. K., and Roederer, J. G.: 1999, J. Geophys. Res. 104, 22759.CrossRefGoogle Scholar
  78. Mauk, B. H., Krimigis, S. M., Mitchell, D. G., and Roelof, E. C.: 1998,Adv. Space Res. 21, 1483.CrossRefGoogle Scholar
  79. Mauk, B. H., Krimigis, S. M., and Acuña, M. H.: 1994, J. Geophys. Res. 99, 14781.Google Scholar
  80. Mauk, B., Krimigis, S. M., and Lepping, R.: 1985, J. Geophys. Res. 90, 8253.Google Scholar
  81. McEntire, R. W. and Mitchell, D. G.: 1989, Burch, J., Waite, J., (eds.),Outstanding Problems in Solar System Plasma Physics, AGU Monograph.Google Scholar
  82. Meckbach, W., Braunstein, G., and Arista, N.: 1975, J. Phys. B 8, L344.Google Scholar
  83. Mendis, D. A., Hill, J. R., Ip, W. H., Goertz, C. K., and Grün, E.: 1984, ’Electrodynamic processes in the ring system of Saturn’., Gehrels, T., Matthews,M. S.(eds.), Saturn, The University of Arizona Press, Tucson, p. 546.Google Scholar
  84. Mitchell, D. G., Hsieh, K. C., Curtis, C. C., Hamilton, D. C., Voss, H. D., Roelof, E. C., and Brent, P. C.: 2001, Geophys. Res. Lett. 28, 1151.CrossRefGoogle Scholar
  85. Mitchell, D. G., Krimigis, S. M., Cheng, A. F., Jaskulek, S. E., Keath, E. P., Mauk, B. H., McEntire, R. W., Roelof, E. C., Schlemm, C. E., Tossman, B. E., and Williams, D. J.: 1996, in: Proceedings SPIE International Symposium on Optical Science Engineering and Instrumentation, Mission to the Sun, Vol. 2803, p. 154.Google Scholar
  86. Ness, N. F.,et al.1982, J. Geophys. Res. 87, 1369.Google Scholar
  87. Neubauer, F. M.: 1992, in: Proceedings of the Symposium on Titan, Toulouse, France, ESA SP-338, p. 267.Google Scholar
  88. Paonessa, M. and Cheng, A. F.: 1986, J. Geophys. Res. 91, 1391.Google Scholar
  89. Paranicas, C., Cheng, A. F., and Williams, D. J.: 1998, J. Geophys. Res. 103, 15001.CrossRefGoogle Scholar
  90. Paranicas, C. P., Mauk, B. H., and Krimigis, S. M.: 1991, J. Geophys. Res. 96, 21135.Google Scholar
  91. Prangé, R., Zarka, P., Ballester, G. E., Livengood, T. A., Denis, L., Carr, T., Reyes, F., Bame, S. J., and Moos, H. W.: 1993, Geophys. Res. 98, 18779.Google Scholar
  92. Reiner, M. J., Fainberg, J., Stone, R. G., Kaiser, M. L., Desch, M. D., Manning, R., Zarka, P., and Pedersen, B. M.: 1993, J. Geophys. Res. Planets 98, 13163.Google Scholar
  93. Roelof, E. C.: 1992, E. Marsh, R. Schwenn (eds) Proceedings of the 3rd COSPAR Colloquium, p. 385.Google Scholar
  94. Roelof, E. C.: 1987, Geophys. Res. Lett. 14, 652.Google Scholar
  95. Roelof, E. C. and Williams, D. J.: 1990, Johns Hopkins APL Tech. Dig. 11, 72.Google Scholar
  96. Roelof, E. C., Mitchell, D. G., and Williams, D. J.: 1985, J. Geophys. Res. 90, 10991.Google Scholar
  97. Sandel, B. R. and Broadfoot, A. L.: 1981, Nature 292, 679.CrossRefGoogle Scholar
  98. Satoh, T., Connerney, J. E. P., and Baron, R. L.: 1996, Icarus 122, 1.CrossRefGoogle Scholar
  99. Schneider, N. M. and Trauger, J. T.: 1995, Astrophys. J. 450, 450.CrossRefGoogle Scholar
  100. Schulz, M. and Lanzerotti, L. J.: 1974, Particle Diffusion in the Radiation Belts, Springer-Verlag.Google Scholar
  101. Shemansky, D. E. and Hall, D. T.: 1992, J. Geophys. Res. 97, 4143.Google Scholar
  102. Simpson, J. A., Bastian, T. S., Chenette, D. L., McKibben, R. B., and Pyle, K. R.: 1980, J. Geophys. Res. 85, 5731.Google Scholar
  103. Sittler, E. C., Ogilvie, K. W., and Scudder, J. D.: 1983, J. Geophys. Res. 88, 8847.Google Scholar
  104. Van Allen, J. A.: 1984, Gehrels, T., Matthews, M. S., (eds.),Saturn, p. 281.Google Scholar
  105. Williams, D. J. and Mauk, B. H.: 1997, J. Geophys. Res. 102, 24283.CrossRefGoogle Scholar
  106. Williams, D. J., Mauk, B., and McEntire, R. W.: 1997a, Geophys. Res. Lett. 24, 2953.CrossRefGoogle Scholar
  107. Williams, D. J., Mauk, B. H., McEntire, R. W., Roelof, E. C., Armstrong, T. P., Wilken, B., Roederer, J. G., Krimigis, S. M., Fritz, T. A., Lanzerotti, L. J., and Murphy, N.: 1997b, Geophys. Res. Lett. 24, 2163.CrossRefGoogle Scholar
  108. Williams, D. J., Mauk, B. H., McEntire, R. W., Roelof, E. C., Armstrong, T. P., Wilken, B., Roederer, J. G., Krimigis, S. M., Fritz, T. A., Lanzerotti, L. J.: 1996, Science 274, 401.PubMedGoogle Scholar
  109. Williams, D. J., McEntire, R. W., Schlemm, C. E., Lui, A. T. Y., Gloeckler, G., Christon, S. P., and Gliem, F.: 1994, J. Geomagn. Geoelectr. 46, 39.Google Scholar
  110. Witte, M., Banaszkiewicz, M., and Rosenbauer, H.: 1996, Space Sci. Rev. 78, 289.CrossRefGoogle Scholar
  111. Woch, J., Krupp, N., Lagg, A., Wilken, B., Livi, S., and Williams, D. J.: 1998, Geophys. Res. Lett. 25, 1253–1256.CrossRefGoogle Scholar
  112. Woch, J., Krupp, N., Khurana, K. K., Kivelson, M. G., Roux, A., Perraut, S., Louarn, P., Lagg, A., Williams, D. J., Livi S., and Wilken, B.: 1999, Geophys. Res. Lett. 26, 2137–2140.CrossRefGoogle Scholar
  113. Zwickl, R. D., Krimigis, S. M., Carbary, J. F., Keath, E. P., Armstrong, T. P., Hamilton, D. C., and Gloeckler, G.: 1981, J. Geophys. Res. 86, 8125.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • S. M. Krimigis
    • 1
  • D. G. Mitchell
    • 1
  • D. C. Hamilton
    • 2
  • S. Livi
    • 1
  • J. Dandouras
    • 4
  • S. Jaskulek
    • 1
  • T. P. Armstrong
    • 5
  • J. D. Boldt
    • 1
  • A. F. Cheng
    • 1
  • G. Gloeckler
    • 2
  • J. R. Hayes
    • 1
  • K. C. Hsieh
    • 6
  • W.-H. Ip
    • 3
  • E. P. Keath
    • 1
  • E. Kirsch
    • 3
  • N. Krupp
    • 3
  • L. J. Lanzerotti
    • 7
  • R. Lundgren
    • 2
  • B. H. Mauk
    • 1
  • R. W. McEntire
    • 1
  • E. C. Roelof
    • 1
  • C. E. Schlemm
    • 1
  • B. E. Tossman
    • 1
  • B. Wilken
    • 3
  • D. J. Williams
    • 1
  1. 1.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelU.S.A.
  2. 2.Department of PhysicsUniversity of MarylandCollege ParkU.S.A.
  3. 3.Max-Planck Institut für AeronomieKatlenburg-LindauGermany
  4. 4.Centre d’Etude Spatiale des RayonnementsCNRS/Université Paul SabatierToulouse Cedex 4France
  5. 5.Department of Physics and AstronomyUniversity of KansasLawrence
  6. 6.Department of PhysicsUniversity of ArizonaTucsonU.S.A.
  7. 7.Bell Laboratories, Lucent TechnologiesMurry HillU.S.A.

Personalised recommendations