Space Science Reviews

, Volume 114, Issue 1–4, pp 1–112

Cassini Plasma Spectrometer Investigation

  • D. T. Young
  • J. J. Berthelier
  • M. Blanc
  • J. L. Burch
  • A. J. Coates
  • R. Goldstein
  • M. Grande
  • T. W. Hill
  • R. E. Johnson
  • V. Kelha
  • D. J. Mccomas
  • E. C. Sittler
  • K. R. Svenes
  • K. Szegö
  • P. Tanskanen
  • K. Ahola
  • D. Anderson
  • S. Bakshi
  • R. A. Baragiola
  • B. L. Barraclough
  • R. K. Black
  • S. Bolton
  • T. Booker
  • R. Bowman
  • P. Casey
  • F. J. Crary
  • D. Delapp
  • G. Dirks
  • N. Eaker
  • H. Funsten
  • J. D. Furman
  • J. T. Gosling
  • H. Hannula
  • C. Holmlund
  • H. Huomo
  • J. M. Illiano
  • P. Jensen
  • M. A. Johnson
  • D. R. Linder
  • T. Luntama
  • S. Maurice
  • K. P. Mccabe
  • K. Mursula
  • B. T. Narheim
  • J. E. Nordholt
  • A. Preece
  • J. Rudzki
  • A. Ruitberg
  • K. Smith
  • S. Szalai
  • M. F. Thomsen
  • K. Viherkanto
  • J. Vilppola
  • T. Vollmer
  • T. E. Wahl
  • M. Wüest
  • T. Ylikorpi
  • C. Zinsmeyer
Article

DOI: 10.1007/s11214-004-1406-4

Cite this article as:
Young, D.T., Berthelier, J.J., Blanc, M. et al. Space Sci Rev (2004) 114: 1. doi:10.1007/s11214-004-1406-4

Abstract

The Cassini Plasma Spectrometer (CAPS) will make comprehensive three-dimensional mass-resolved measurements of the full variety of plasma phenomena found in Saturn’s magnetosphere. Our fundamental scientific goals are to understand the nature of saturnian plasmas primarily their sources of ionization, and the means by which they are accelerated, transported, and lost. In so doing the CAPS investigation will contribute to understanding Saturn’s magnetosphere and its complex interactions with Titan, the icy satellites and rings, Saturn’s ionosphere and aurora, and the solar wind. Our design approach meets these goals by emphasizing two complementary types of measurements: high-time resolution velocity distributions of electrons and all major ion species; and lower-time resolution, high-mass resolution spectra of all ion species. The CAPS instrument is made up of three sensors: the Electron Spectrometer (ELS), the Ion Beam Spectrometer (IBS), and the Ion Mass Spectrometer (IMS). The ELS measures the velocity distribution of electrons from 0.6 eV to 28,250 keV, a range that permits coverage of thermal electrons found at Titan and near the ring plane as well as more energetic trapped electrons and auroral particles. The IBS measures ion velocity distributions with very high angular and energy resolution from 1 eV to 49,800 keV. It is specially designed to measure sharply defined ion beams expected in the solar wind at 9.5 AU, highly directional rammed ion fluxes encountered in Titan’s ionosphere, and anticipated field-aligned auroral fluxes. The IMS is designed to measure the composition of hot, diffuse magnetospheric plasmas and low-concentration ion species 1 eV to 50,280 eV with an atomic resolution M/ΔM ∼70 and, for certain molecules, (such asN2+ and CO+), effective resolution as high as ∼2500. The three sensors are mounted on a motor-driven actuator that rotates the entire instrument over approximately one-half of the sky every 3 min.

Keywords

Saturn Titan magnetosphere space plasma ion composition 

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • D. T. Young
    • 1
  • J. J. Berthelier
    • 3
  • M. Blanc
    • 4
  • J. L. Burch
    • 1
  • A. J. Coates
    • 5
  • R. Goldstein
    • 1
  • M. Grande
    • 7
  • T. W. Hill
    • 8
  • R. E. Johnson
    • 10
  • V. Kelha
    • 11
  • D. J. Mccomas
    • 1
  • E. C. Sittler
    • 9
  • K. R. Svenes
    • 12
  • K. Szegö
    • 13
  • P. Tanskanen
    • 14
  • K. Ahola
    • 16
  • D. Anderson
    • 1
  • S. Bakshi
    • 9
  • R. A. Baragiola
    • 10
  • B. L. Barraclough
    • 2
  • R. K. Black
    • 1
  • S. Bolton
    • 6
  • T. Booker
    • 1
  • R. Bowman
    • 1
  • P. Casey
    • 1
  • F. J. Crary
    • 1
  • D. Delapp
    • 2
  • G. Dirks
    • 1
  • N. Eaker
    • 1
  • H. Funsten
    • 2
  • J. D. Furman
    • 1
  • J. T. Gosling
    • 2
  • H. Hannula
    • 11
  • C. Holmlund
    • 11
  • H. Huomo
    • 15
  • J. M. Illiano
    • 3
  • P. Jensen
    • 1
  • M. A. Johnson
    • 9
  • D. R. Linder
    • 5
  • T. Luntama
    • 11
  • S. Maurice
    • 4
  • K. P. Mccabe
    • 2
  • K. Mursula
    • 14
  • B. T. Narheim
    • 12
  • J. E. Nordholt
    • 2
  • A. Preece
    • 7
  • J. Rudzki
    • 1
  • A. Ruitberg
    • 9
  • K. Smith
    • 1
  • S. Szalai
    • 13
  • M. F. Thomsen
    • 2
  • K. Viherkanto
    • 11
  • J. Vilppola
    • 14
  • T. Vollmer
    • 9
  • T. E. Wahl
    • 6
  • M. Wüest
    • 1
  • T. Ylikorpi
    • 11
  • C. Zinsmeyer
    • 1
  1. 1.Southwest Research InstituteSan AntonioU.S.A.
  2. 2.Los Alamos National LaboratoryLos AlamosU.S.A.
  3. 3.Centre d’étude des Environnements Terrestre et Planetaires, CNRSSt. MaurFrance
  4. 4.Observatoire Midi-PyrenéesToulouseFrance
  5. 5.Mullard Space Science LaboratoryUniversity College LondonSurreyEngland
  6. 6.Jet Propulsion LaboratoryPasadenaU.S.A.
  7. 7.Rutherford Appleton LaboratoryOxfordshireEngland
  8. 8.Rice UniversityHoustonU.S.A.
  9. 9.Goddard Space Flight CenterGreenbeltU.S.A.
  10. 10.University of VirginiaCharlottesvilleU.S.A.e
  11. 11.VTT Information TechnologyEspooFinland
  12. 12.Norwegian Defense Research EstablishmentKjellerNorway
  13. 13.KFKI Research Institute for Particle and Nuclear PhysicsBudapestHungary
  14. 14.University of OuluOuluFinland
  15. 15.Nokia CorporationHelsinkiFinland
  16. 16.TEKES Technology Development CentreHelsinkiFinland

Personalised recommendations