Advertisement

Systemic Practice and Action Research

, Volume 25, Issue 2, pp 95–116 | Cite as

A Systemic Framework to Develop Sustainable Engineering Solutions in Rural Communities in Colombia

Case Study: Ingenieros sin Fronteras Colombia
  • María Catalina RamírezEmail author
  • Jaime Plazas
  • Camilo Torres
  • Juan Camilo Silva
  • Luis Camilo Caicedo
  • Miguel Angel González
Article

Abstract

In several rural areas in Colombia there is a serious lack of water quality supply. Thereby the problematic situation is understood as complex one that involves stakeholders with pluralistic interests, multiple variables and requires the development of sustainable and suitable solutions. In order to address this issue, this paper proposes an integration of engineering design framework (CDIO) with a systemic approach. Particularly the approach emphasizes on systemic elements such as autonomy, systems within systems, cooperation between stakeholders and cause effect relations; it also proposes a previous observing phase for engineering design framework. Thus the proposed systemic framework aims to generate projects that improve living conditions in rural communities and promote the production of knowledge between the stakeholders to ensure sustainability in the long term. To illustrate the proposal, this work contains a case study that discusses a project carried out by a research team—Ingenieros Sin Fronteras Colombia—in a rural district near to Colombia’s capital. The experience, which involved and benefited 16 families in the community, provided strong evidence to support the proposed framework. The paper concludes with a discussion about the replication of this proposal in other contexts.

Keywords

Systemic approach CDIO ISF Colombia Sustainable engineering solutions Rural community development Vulnerable communities 

References

  1. Ashby WR (1964) An introduction to cybernetics. Methuen, LondonGoogle Scholar
  2. Bauer R, Dizer H, Graeber I, Rosenwinkel KH & López-Pila JM (2011) Removal of bacterial fecal indicators, coliphages and enteric adenoviruses from waters with high fecal pollution by slow sand filtration. Water Res 45(2):439–452. Epub 2010 Sep 28Google Scholar
  3. Beer S (1985) Diagnosing the system for organisations. Wiley, ChichesterGoogle Scholar
  4. Berlinck CN, Saito CH (2010) Action research for emancipation informed by habermas and hierarchy of systems: case study on environmental education and management of water resources in Brazil. Syst Pract Action Res 24:2Google Scholar
  5. Brooks D (2004) Agua: Manejo a nivel local. International Development Research CenterGoogle Scholar
  6. Cardenas JC (2009) Dilemas de lo colectivo. Instituciones, pobreza y cooperación en el manejo de los recursos de uso común. ISBN 9789586953672Google Scholar
  7. Carvajal JA, Ramírez MC, Hernandez JT (2012) Observe, conceive, design, implement and operate: innovation for sustainability (Chapter 7). In: Technological, managerial and organizational core competencies: dynamic innovation and sustainable development. IGI, Global. doi: 10.4018/978-1-61350-165-8
  8. CDIO (nd) Retrieved Sept 8, 2009, from http://www.cdio.org/
  9. Chang Y, Wang T, Chen S, Liao R (2011) Student engineers as agents of change: combining social inclusion in the professional development of electrical and computer engineering students. Syst Pract Action Res 24:3CrossRefGoogle Scholar
  10. CICR (2010) Informe Colombia 2009. Retrieved June 20, 2011, from http://www.icrc.org/web/spa/sitespa0.nsf/htmlall/p_t20102103
  11. Cohen A, Bennis W, Wolkon G (1961) The effects of continued practice on the behaviors of problem-solving groups. Sociometry 24(4):416–431CrossRefGoogle Scholar
  12. Crawley E (2001). The CDIO syllabus. A statement of goals for undergraduate engineering education. MIT CDIO report #1Google Scholar
  13. DANE (2010) Perfil censo general 2005. Recovered on Jan 18, 2011, from http://www.dane.gov.co
  14. Defensoría del Pueblo (2009) Diagnóstico Sobre La Calidad Del Agua Para El Consumo Humano En Colombia, En El Marco Del Derecho Humano Al Agua. Actualización del Informe Defensorial No. 39Google Scholar
  15. Deutsch M (1968) The effects of cooperation and competition upon group process. In: Cartwright D, Zander A (eds) Group dynamics: research and theory (3rd edn) Harper & Row, New CorkGoogle Scholar
  16. Duque M (2006) Competencias, Aprendizaje Activo e Indagación: Un caso práctico en ingeniería Revista Educación en Ingeniería. Asociación Colombiana de Facultades de Ingeniería ACOFI. 2:7–18Google Scholar
  17. Espejo R, Reyes A (2011) Organizational systems: managing complexity with the viable system modelGoogle Scholar
  18. Fernández D (2004) Colombia: Desarrollo Económico Reciente en Infraestructura. Informes de Base. Sector Agua Potable, Documento del Banco MundialGoogle Scholar
  19. Flood R (2010) The relationship of ‘systems thinking’ to action research. Syst Pract Action Res 23:4CrossRefGoogle Scholar
  20. Gibbons M, Nowotny H, Scott P (2001) Re-thinking science: knowledge and the public in an age of uncertainty. Polity Press, CambridgeGoogle Scholar
  21. Herrscher E (2006) What is the systems approach good for? Syst Pract Action Res 19:5Google Scholar
  22. Laboratorio Integrado de Ingeniería Civil y Ambiental (nd) Acreditación. Universidad de los Andes. Recovered on March 2011 from http://laboratoriointegrado.uniandes.edu.co/acredita_amb.html
  23. Laverie D (2006) In class active cooperative learning: a way to build knowledge and skills in marketing courses. Mark Educ Rev 16(2)Google Scholar
  24. Lucena J, Schneider J, Leydens J, Baillie C, (2010) Engineering and sustainable community development. Series Editor, Paperback ©, ISBN 1608450708Google Scholar
  25. Nuttall J, Wallace A, Price D, Amstrong R, Sounnesset et al (2010) Fast trackcking the adaptation of gran production systems to a changing climate using participatory action research, development and extension PARD&E process. In: Foos security from sustainable agriculture. Proceedings of the 15th ASA conference, 15–19 November 2010, Australian Society of Agronomy, Lincon, New ZealansGoogle Scholar
  26. Ramírez MC, Maldonado A, Calvo D, Gonzalez MA, Caicedo LC, Gereda D, Munoz F (2011) Water engineering: a challenge for sustainable development for vulnerable communities—case Colombia. In: Water engineering. Nova Science Publishers, Inc. ISBN 978-1-61209-914-9Google Scholar
  27. Ratnayaka D, Brandt MJ, Johnson KM (2009) Water filtration granular media filtration. Water Suppl 315–350Google Scholar
  28. Rist S, Chiddambaranathan M, Escobar C, Wiesmann U (2006) The multidimensionality of social learning processes concerned with sustainable natural resource use in India, Africa and Latin America. Syst Pract Action Res 19:3CrossRefGoogle Scholar
  29. Schwaninger M (2000) Managing complexity—the path toward intelligent organizations. Syst Pract Action Res 13:2CrossRefGoogle Scholar
  30. Senge P (2006) The fifth discipline: the art and practice of the learning organization. Doubleday/Currency, New YorkGoogle Scholar
  31. Simon S (2007) Complexity, democracy and sustainability: promoting water security through systemic online negotiations. Syst Pract Action Res 20:3CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • María Catalina Ramírez
    • 1
    Email author
  • Jaime Plazas
    • 2
  • Camilo Torres
    • 3
  • Juan Camilo Silva
    • 1
  • Luis Camilo Caicedo
    • 1
  • Miguel Angel González
    • 1
  1. 1.Department of Industrial EngineeringUniversidad de los AndesBogotáColombia
  2. 2.Environmental EngineeringUniversity of IllinoisUrbana-ChampainUSA
  3. 3.Department of Civil EngineeringCorporación Universitaria Minuto de DiosBogotáColombia

Personalised recommendations