Solar System Research

, Volume 39, Issue 3, pp 176–186 | Cite as

High-Precision Ephemerides of Planets—EPM and Determination of Some Astronomical Constants

  • E. V. Pitjeva


The latest version of the planetary part of the numerical ephemerides EPM (Ephemerides of Planets and the Moon) developed at the Institute of Applied Astronomy of the Russian Academy of Sciences is presented. The ephemerides of planets and the Moon were constructed by numerical integration in the post-Newtonian metric over a 140-year interval (from 1880 to 2020). The dynamical model of EPM2004 ephemerides includes the mutual perturbations from major planets and the Moon computed in terms of General Relativity with allowance for effects due to lunar physical libration, perturbations from 301 big asteroids, and dynamic perturbations due to the solar oblateness and the massive asteroid ring with uniform mass distribution in the plane of the ecliptic. The EPM2004 ephemerides resulted from a least-squares adjustment to more than 317000 position observations (1913–2003) of various types, including radiometric measurements of planets and spacecraft, CCD astrometric observations of the outer planets and their satellites, and meridian and photographic observations. The high-precision ephemerides constructed made it possible to determine, from modern radiometric measurements, a wide range of astrometric constants, including the astronomical unit AU = (149597870.6960 ± 0.0001) km, parameters of the rotation of Mars, the masses of the biggest asteroids, the solar quadrupole moment J2 = (1.9 ± 0.3) × 10−7, and the parameters of the PPN formalism β and γ. Also given is a brief summary of the available state-of-the-art ephemerides with the same precision: various versions of EPM and DE ephemerides from the Jet Propulsion Laboratory (JPL) (USA) and the recent versions of these ephemerides—EPM2004 and DE410—are compared. EPM2004 ephemerides are available via FTP at


Astronomical Unit Radiometric Measurement Physical Libration Astrometric Observation Solar Oblateness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abalakin, V.K., Osnovy efemeridnoi astronomii (Fundamentals of Ephemeris Astronomy), Dagaev, M.M. and Rakhlin, I.E., Eds., Moscow: Nauka, 1979.Google Scholar
  2. Akim, E.L. and Stepanianz, V.A., Numerical Theory of the Motion of the Earth and Venus Derived from Data of Radar and Optical Observations and Tracking Data for the Venera 9 and 10 Satellites, Dokl. Akad. Nauk SSSR, 1977, vol. 233, pp. 314–317 [Sov. Phys. Dokl. (Engl. Transl.), 1977, vol. 22, no. 3, pp. 135–137].Google Scholar
  3. Akim, E h.L., Brumberg, V.A., Kislik, M.D., et al., A Relativistic Theory of Motion of Inner Planets, in Relativity in Celestial Mechanics and Astrometry, IAU Symp. 114, Kovalevsky, J. and Brumberg, V.A., Eds., Dordrecht: Kluwer, 1986, pp. 63–68.Google Scholar
  4. Ash, M.E., Shapiro, I.I., and Smith, W.B., Astronomical Constants and Planetary Ephemerides Deduced from Radar and Optical Observations, Astron. J., 1967, vol. 72, pp. 332–350.CrossRefGoogle Scholar
  5. Bretagnon, P. and Francou, G., Planetary Theories in Rectangular and VSOP87 Solutions, Astron. Astrophys., 1988, vol. 202, pp. 309–315.Google Scholar
  6. Brumberg, V.A., Relyativistskaya nebesnaya mekhanika (Relativistic Celestial Mechanics), Demin, V.G., Ed., Moscow: Nauka, 1972.Google Scholar
  7. Dunham, D.W., Goffin, E., Manek, J., et al., Asteroidal Occultation Results Multiply Helped by HIPPARCOS, J. Ital. Astron. Soc., 2002, vol. 73, no.3, pp. 662–665.Google Scholar
  8. Eckert, W.J., Brouwer, D., and Clemence, G.M., Coordinates of the Five Outer Planets 1653–2060, Astron. Pap, 1951, vol. 12.Google Scholar
  9. Eroshkin, G.I., Glebova, N.I., and Fursenko, M.A., Dopolneniya k Astronomicheskomu ezhegodniku (Additions to the Astronomical Yearbook), St. Petersburg: Inst. Teor. Astron. Ross. Akad. Nauk, 1992, vol. 27-28A, pp. 1–8.Google Scholar
  10. Everhart, E., Implicit Single-Sequence Methods for Integrating Orbits, Celest. Mech., 1974, vol. 10, pp. 35–55.CrossRefGoogle Scholar
  11. Fienga, A. and Simon, J.-L., Analytical and Numerical Studies of Asteroids Perturbations on Solar System Planet Dynamics, Astron. Astrophys., 2005, vol. 429, pp. 361–367.CrossRefGoogle Scholar
  12. Folkner, W.M., Yoder, C.F., Yuan, D.N., et al., Interior Structure and Seasonal Mass Redistribution of Mars from Radio Tracking of Mars Pathfinder, Science, 1997, vol. 278, pp. 1749–1752.CrossRefPubMedGoogle Scholar
  13. Glebova, N.I., On the Improvement of the Ephemerides of Inner Planets on the Basis of Optical and Radar Data Treatment for 1960–1980, Byull. Inst. Teor. Astron., 1984, vol. 15, pp. 241–250.Google Scholar
  14. Hilton, J.L., Asteroid Mass and Densities, in Asteroids III, Bottke, W.F., Jr., Cellino, A., Paolicchi, P., and Binzel, R.P., Eds., Tucson: Univ. Arizona Press, 2002, pp. 103–112.Google Scholar
  15. Kislik, M.D., Koljuka, Yu.F., Kotel’nikov, V.A., et al., A General Relativistic Theory of Motion of the Inner planets of the Solar System, Dokl. Akad. Nauk SSSR, 1980, vol. 255, no.3, pp. 545–547 [Sov. Phys. Dokl. (Engl. Transl.), 1980, vol. 25, no. 11, pp. 867–869].Google Scholar
  16. Krasinsky, G.A., Pitjeva, E.V., Sveshnikov, M.L., and Sveshnikova, E.S., Some Results from the Reduction of Radar, Laser, and Optical Observations of the Inner Planets and the Moon, Dokl. Akad. Nauk SSSR, 1981, vol. 261, pp.1320–1324 [Sov. Phys. Dokl. (Engl. Transl.), 1981, vol. 26, no. 12, pp. 1103–1105].Google Scholar
  17. Krasinsky, G.A., Pitjeva, E.V., Sveshnikov, M.L., and Sveshnikova, E.S., Improvement of the Ephemerides of the Inner Planets and the Moon using Radar Measurements, Lunar Laser and Meridian Observations in 1961-1980, Byull. Inst. Teor. Astron., 1982, vol. 15, no.3, pp. 145–164.Google Scholar
  18. Krasinsky, G.A., Pitjeva, E.V., Sveshnikov, M.L., and Chunajeva, L.I., The Motion of Major Planets from Observations 1769–1988 and Some Astronomical Constants, Celest. Mech. Dyn. Astron., 1993, vol. 55, pp. 1–23.CrossRefGoogle Scholar
  19. Krasinsky, G.A. and Vasilyev, M.V., Universal Programming System ERA for High Precision Applications of Dynamic and Ephemeris Astronomy, in Dynamics and astrometry of natural and artificial celestial bodies, IAU Coll. 165, Wytrzyszczak, I.M., Lieske, J.H., and Feldman, R.A., Eds., Dordrecht: Kluwer, 1997, pp. 239–244.Google Scholar
  20. Krasinsky, G.A., Pitjeva, E.V., Vasilyev, M.V., and Yagudina, E.I., Estimating Masses of Asteroids, Commun. IAA RAS, 2001, vol. 139, pp. 1–43.Google Scholar
  21. Krasinsky, G.A., Selenodynamical Parameters from Analysis of LLR Observations of 1970–2001, Commun. IAA RAS, 2002, vol. 148, pp. 1–27.Google Scholar
  22. Krasinsky, G.A., Pitjeva, E.V., Vasilyev, M.V., and Yagudina, E.I., Hidden Mass in the Asteroid Belt, Icarus, 2002, vol. 158, pp. 98–105.CrossRefGoogle Scholar
  23. Mignard, F., Report of the IAU Working Group on ICRS, in Towards models and constants for sub-microarcsecond astrometry, Johnston, K.J., McCarthy, D.D., Luzum, B.J., and Kaplan, G.H., Eds., Washington, DC, USA: U.S. Naval Observatory, 2000, pp. 10–19.Google Scholar
  24. Newhall, X.X., Standish, E.M., Jr., and Williams, J.G., DE102: a Numerically Integrated Ephemerides of the Moon and Planets Spanning Forty-four Centuries, Astron. Astrophys., 1983, vol. 125, pp. 150–167.Google Scholar
  25. Oesterwinter, C. and Cohen, Ch.J., New Orbital Elements for Moon and Planets, Celest. Mech., 1972, vol. 5, pp. 317–395.CrossRefGoogle Scholar
  26. Ostro, S.J., Hudson, R.S., Berner, A.M., et al., Asteroid Radar Astronomy, in Asteroids III, Bottke, W.F., Jr., Cellino, A., Paolicchi, P., and Binzel, R.P., Eds., Tucson: Univ. Arizona Press, 2002, pp. 289–312.Google Scholar
  27. Pitjeva, E.V., Study of the Mars Dynamics based on the Analysis of Observations of the Viking and Pathfinder Landers, Tr. Inst. Prikl. Astron. Ross. Akad. Nauk, 1999, vol. 4, pp. 22–35.Google Scholar
  28. Pitjeva, E.V., Modern Numerical Ephemerides of Planets and the Importance of Ranging Observations for Their Creation, Celest. Mech. Dyn. Astron., 2001a, vol. 80, pp. 249–271.CrossRefGoogle Scholar
  29. Pitjeva, E.V., Progress in the Determination of Some Astronomical Constants from Radiometric Observations of Planets and Spacecraft, Astron. Astrophys., 2001b, vol. 371, pp. 760–765.CrossRefGoogle Scholar
  30. Pitjeva, E.V., Modern Numerical Theories of the Motion of the Sun, Moon and Major Planets: a Comprehensive Commentary to the Astronomical Yearbook, Tr. Inst. Prikl. Astron. Ross. Akad. Nauk, 2004, vol. 10, pp. 112–134.Google Scholar
  31. Standish, E.M., Keesey, M.S.W., and Newhall, X.X., JPL Development Ephemeris Number 96, JPL Tech. Rep., 1976, vol. 32-1603, pp. 1–36.Google Scholar
  32. Standish, E.M., Jr., The Observational Basis for JPL’s DE200 Planetary Ephemerides of the Astronomical Almanac, Astron. Astrophys, 1990, vol. 233, pp. 252–271.Google Scholar
  33. Standish, E.M., Newhall, X.X., Williams, J.G., and Folkner, W.M., JPL Planetary and Lunar Ephemerides, DE403/LE403, Interoffice Memorandum, 1995, vol. 314.10-127, pp. 1–22.Google Scholar
  34. Standish, E.M., JPL Planetary and Lunar Ephemerides, DE405/LE405, Interoffice Memorandum, 1998, vol. 312, F-98-048, pp. 1–18.Google Scholar
  35. Standish, E.M. and Fienga, A., Accuracy Limit of Modern Ephemerides Imposed by Uncertainties in Asteroid Masses, Astron. Astrophys., 2002, vol. 384, pp. 322–328.CrossRefGoogle Scholar
  36. Standish, E.M., The Astronomical Unit Now, in Transit of Venus: new views of the solar system and galaxy, IAU Coll. 196, Kurtz, D.W., Ed., Cambridge: Cambridge University Press, 2005 (in press).Google Scholar
  37. Sveshnikov, M.L., Reduction of Washington Observations of Major Planets and the Sun to the Uniform System, Byull. Inst. Teor. Astron., 1974, vol. 152, pp. 563–570.Google Scholar
  38. Sveshnikov, M.L., personal communication, 2000.Google Scholar
  39. Tedesco, E.F., Noah, P.V., Noah, M., and Price, S.D., The Supplemental IRAS Minor Planet Survey, Astron. J., 2002a, vol. 123, pp. 1056–1085.CrossRefGoogle Scholar
  40. Tedesco, E.F., Egan, M.P., and Price, S.D., The Midcourse Space Experiment Infrared Minor Planet Survey, Astron. J., 2002b, vol. 124, pp. 583–591.CrossRefGoogle Scholar
  41. Yoder, C.F. and Standish, E.M., Martian Precession and Rotation from Viking Lander Range Data, J. Geophys. Res., Ser. E, 1997, vol. 102, no.2, pp. 4065–4080.Google Scholar
  42. Yoder, C.F., Konoplev, A.S., Yuan, D.N., et al., Fluid Core Size of Mars from Detection of the Solar Tide, Science, 2003, vol. 300, pp. 299–303.CrossRefPubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • E. V. Pitjeva
    • 1
  1. 1.Institute of Applied AstronomyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations