Advertisement

Solar Physics

, 295:8 | Cite as

Long-term Periodicities in North–south Asymmetry of Solar Activity and Alignments of the Giant Planets

  • J. JavaraiahEmail author
Article

Abstract

The existence of ≈ 12-year and ≈ 51-year periodicities in the north–south asymmetry of solar activity is well known. However, the origin of these as well as the well-known relatively short periodicities in the north–south asymmetry is not yet clear. Here we have analyzed the combined daily data of sunspot groups reported in Greenwich Photoheliographic Results (GPR) and Debrecen Photoheliographic Data (DPD) during the period 1874 – 2017 and the data of the orbital positions (ecliptic longitudes) of the giant planets in ten-day intervals during the period 1600 – 2099. Our analysis suggests that ≈ 12-year and ≈ 51-year periodicities in the north–south asymmetry of solar activity are the manifestations of the differences in the strengths of ≈ 11-year and ≈ 51-year periodicities of activity in the northern- and southern-hemispheres. During the period 1874 – 2017 the Morlet wavelet power spectrum of the north–south asymmetry of sunspot-group area and that of the mean absolute difference (\(\overline{\psi _{\mathrm{D}}}\)) of the orbital positions of the giant planets are found to be similar. Particularly, there is a suggestion that the ≈ 12-year and ≈ 51-year periodicities in the north–south asymmetry of sunspot-group area occurred during approximately the same times as the corresponding periodicities in \(\overline{\psi _{\mathrm{D}}}\). Therefore, we suggest that there could be influence of some specific configurations of the giant planets in the origin of the ≈ 12-year and ≈ 50-year periodicities of the north–south asymmetry of solar activity.

Keywords

Sun: dynamo Sun: solar activity (Sun): solar system dynamics 

Notes

Acknowledgements

The author thanks anonymous referee for helpful comments and suggestions. The author is thankful to Ferenc Varadi for providing the entire planetary data used here. Wavelet software was provided by C. Torrence and G. Compo and is available at http://paos.colorado.edu/research/wavelets.

Disclosure of Potential Conflicts of Interest

The author declares that he has no conflicts of interest.

References

  1. Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: 2012, Astron. Astrophys.548, A88. DOI. ADSCrossRefGoogle Scholar
  2. Badalyan, O.G., Obridko, V.N.: 2011, New Astron.16, 357. DOI. ADSCrossRefGoogle Scholar
  3. Ballester, J.L., Oliver, R., Carbonell, M.: 2005, Astron. Astrophys.431, L5. DOI. ADSCrossRefGoogle Scholar
  4. Belucz, B., Dikpati, M.: 2013, Astrophys. J.779, 4. DOI. ADSCrossRefGoogle Scholar
  5. Carbonell, M., Oliver, R., Ballester, J.L.: 1993, Astron. Astrophys.274, 497. DOI. ADSCrossRefGoogle Scholar
  6. Chowdhury, P., Gokhale, M.H., Singh, J., Moon, Y.-J.: 2016, Astrophys. Space Sci.361, 54. DOI. ADSCrossRefGoogle Scholar
  7. Cionco, R.G., Compagnucci, R.H.: 2012, Adv. Space Res.50, 1434. DOI. ADSCrossRefGoogle Scholar
  8. Condon, J.J., Schmidt, R.R.: 1975, Solar Phys.42, 529. DOI. ADSCrossRefGoogle Scholar
  9. De Jager, C., Versteegh, G.: 2005, Solar Phys.229, 175. DOI. ADSCrossRefGoogle Scholar
  10. Deng, L.H., Xiang, Y.Y., Qu, Z.N., An, J.M.: 2016, Astrophys. J.151, 70. DOI. ADSCrossRefGoogle Scholar
  11. Duchlev, P.I., Dermendjiev, V.N.: 1996, Solar Phys.168, 205. DOI. ADSCrossRefGoogle Scholar
  12. Gokhale, M.H., Javaraiah, J.: 1995, Solar Phys.156, 157. DOI. ADSCrossRefGoogle Scholar
  13. Javaraiah, J.: 2003, Solar Phys.212, 23. DOI. ADSCrossRefGoogle Scholar
  14. Javaraiah, J.: 2005, Mon. Not. Roy. Astron. Soc.362, 1311. DOI. ADSCrossRefGoogle Scholar
  15. Javaraiah, J.: 2017, Solar Phys.292, 172. DOI. ADSCrossRefGoogle Scholar
  16. Javaraiah, J.: 2018, In: Banerjee, Dr., Jiang, J., Kusano, K., Solanki, S. (eds.) Long-Term Datasets for the Understanding of Solar and Stellar Magnetic Cycles, Proc. IAU Symp.340, 263. DOI. CrossRefGoogle Scholar
  17. Javaraiah, J.: 2019, Solar Phys.294, 64. DOI. ADSCrossRefGoogle Scholar
  18. Javaraiah, J., Gokhale, M.H.: 1997, Solar Phys.170, 389. DOI. ADSCrossRefGoogle Scholar
  19. Javaraiah, J., Ulrich, R.K.: 2006, Solar Phys.237, 245. DOI. ADSCrossRefGoogle Scholar
  20. Jose, P.D.: 1965, Astron. J.70, 193. DOI. ADSCrossRefGoogle Scholar
  21. Juckett, D.A.: 2000, Solar Phys.191, 201. DOI. ADSCrossRefGoogle Scholar
  22. Juckett, D.A.: 2003, Astron. Astrophys.399, 731. DOI. ADSCrossRefGoogle Scholar
  23. Knaack, R., Stenflo, J.O., Berdyugina, S.V.: 2004, Astron. Astrophys.418, L17. DOI. ADSCrossRefGoogle Scholar
  24. Li, K.J., Wang, J.X., Xiong, S.Y., Liang, H.F., Yun, H.S., Gu, X.M.: 2002, Astron. Astrophys.383, 648. DOI. ADSCrossRefGoogle Scholar
  25. Li, K.J., Gao, P.X., Zhan, L.S., Shi, X.J., Zhu, W.W.: 2010, Mon. Not. Roy. Astron. Soc.401, 342. DOI. ADSCrossRefGoogle Scholar
  26. Li, F.Y., Wang, J.X., Xiang, N.B., Xie, J.L., Xu, J.C.: 2019, Astrophys. J.873, 121. DOI. ADSCrossRefGoogle Scholar
  27. Mandal, S., Banerjee, D.: 2016, Astrophys. J. Lett.830, L33. DOI. ADSCrossRefGoogle Scholar
  28. Maraun, D., Kurths, J.: 2004, Nonlinear Process. Geophys.11, 505. SRef-ID: 1607-7946/npg/2004-11-505 ADSCrossRefGoogle Scholar
  29. Nepomnyashchikh, A., Mandal, S., Banerjee, D., Kitchatinov, L.: 2019, Astron. Astrophys.625, A37. DOI. ADSCrossRefGoogle Scholar
  30. Norton, A.A., Gallagher, J.C.: 2010, Solar Phys.261, 193. DOI. ADSCrossRefGoogle Scholar
  31. Ravindra, B., Javaraiah, J.: 2015, New Astron.39, 55. DOI. ADSCrossRefGoogle Scholar
  32. Salvador, R.J.: 2013, Pattern Recogn. Phys.1, 117. DOI. ADSCrossRefGoogle Scholar
  33. Schüssler, M., Cameron, R.H.: 2018, Astron. Astrophys.618, A89. DOI. ADSCrossRefGoogle Scholar
  34. Seidelmann, P.K.: 1992, Explanatory Supplement to the Astronomical Almanac. University Science Books, MillValley. Revised edition. Google Scholar
  35. Sharp, G.J.: 2013, Int. J. Astron. Astrophys.3, 260. DOI. CrossRefGoogle Scholar
  36. Shirley, J.H.: 2017. arXiv.
  37. Sokoloff, D., Nesme-Ribes, E.: 1994, Astron. Astrophys.288, 293. ADSGoogle Scholar
  38. Standish, E.M.: 1998, JPL Planetary and Lunar Ephemerides, DE405/LE405, Interoffice Memo. 312.F-98-048. Jet Propulsion Laboratory, Pasadena, CA, 1998. ftp://navigator.jpl.nasa.gov/ephem/export/de405.iom.
  39. Stefani, F., Giesecke, A., Weier, T.: 2019, Solar Phys.294, 60. DOI. ADSCrossRefGoogle Scholar
  40. Stefani, F., Giesecke, A., Weber, N., Weier, T.: 2016, Solar Phys.291, 2197. DOI. ADSCrossRefGoogle Scholar
  41. Torrence, Ch., Compo, G.P.: 1998, Bull. Am. Meteorol. Soc.79, 61. DOI. ADSCrossRefGoogle Scholar
  42. Verma, V.K.: 1993, Astrophys. J.403, 797. DOI. ADSCrossRefGoogle Scholar
  43. Wilson, I.R.G.: 2013, Pattern Recogn. Phys.1, 147. DOI. ADSCrossRefGoogle Scholar
  44. Wolff, C.L., Patrone, P.N.: 2010, Solar Phys.266, 227. DOI. ADSCrossRefGoogle Scholar
  45. Wood, K.D.: 1972, Nature240, 91. DOI. ADSCrossRefGoogle Scholar
  46. Wood, R.M., Wood, K.D.: 1965, Nature208, 129. DOI. ADSCrossRefGoogle Scholar
  47. Yi, W.: 1992, J. Roy. Astron. Soc. Can.86, 89. ADSGoogle Scholar
  48. Zaqarashvili, T.V.: 1997, Astrophys. J.487, 930. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.BengaluruIndia

Personalised recommendations