Advertisement

Solar Physics

, 294:160 | Cite as

Neural Network for Solar Irradiance Modeling (NN-SIM)

  • Steffen MauceriEmail author
  • Odele Coddington
  • Danielle Lyles
  • Peter Pilewskie
Article
Part of the following topical collections:
  1. Irradiance Variations of the Sun and Sun-like Stars

Abstract

An understanding of solar variability over a broad range of wavelengths and timescales is needed by scientists studying Earth’s climate. While the current understanding of solar irradiance from measurements and models is maturing, there remain notable areas of discrepancy that highlight a lack of understanding of the variability in solar spectral irradiance (SSI) on 27-day solar-rotational timescales and longer, and in total solar irradiance (TSI) at solar-cycle timescales and longer. The sources of instrumental noise and instability suspected behind differences in independent measurement records are actively debated. Furthermore, estimates from solar-irradiance empirical-proxy models and semi-empirical models also differ from each other and from the observations by varying degrees. To investigate whether models and observations can be brought into closer agreement we developed a novel, data-driven, solar-irradiance model using an ensemble of feed-forward artificial neural networks. Key features of our model architecture include a non-linear relationship between solar-activity proxy and irradiance with a high degree of freedom that comes from the incorporation of a greater number of solar-activity proxies than previous proxy models. Furthermore, we utilize a recent re-analysis of solar spectral irradiance (SSI) observations, stemming from a new degradation-correction methodology, to develop our model. Our approach, the Neural Network for Solar Irradiance Modeling (NN-SIM), reconstructs total solar irradiance and SSI from 205 nm to 2300 nm and from 1979 to the present day. We find close agreement between NN-SIM and various observational records as well as independent models. NN-SIM is available at lasp.colorado.edu/lisird/.

Keywords

Solar irradiance Solar irradiance model Neural network 

Notes

Acknowledgments

We thank the scientists and engineers that made the many solar-irradiance and solar-proxy datasets available that we used to train and validate our model. For comparison, we made use of the SATIRE-S and EMPIRE solar irradiance models. Furthermore, we compared to SORCE/SIM SSI, SORCE/SOLSTICE SSI and Mg ii index, Aura/OMI SSI, SORCE/TIM TSI and the TSIc, PMOD, ACRIM, RMIB TSI composites. Finally, the Mg ii index from the University of Bremen, Ly \(\alpha \) composite from lasp.colorado.edu/lisird/data/composite_lyman_alpha/, \(\mbox{F}_{10.7}, \mbox{F}_{15}, \mbox{F}_{30}\) solar flux from spaceweather.cls.fr/services/radioflux/, and SORCE/TIM were directly used for NN-SIM. We acknowledge receipt from PMOD/WRC, Davos, Switzerland, of the updated dataset 42_65_1709 with new data from the VIRGO experiment on the cooperative ESA/NASA Mission SOHO. Additionally, we acknowledge that the the development of the independently derived uncertainties for PSI, Ly \(\alpha\), and TSI received funding from the European Community’s Seventh Framework Programme (FP7 2012) Project SOLID (projects.pmodwrc.ch/solid/) under grant agreement no 313188. Furthermore, we acknowledge the collaboration with the International Team on “Scenarios of Future Solar Activity for Climate Modelling” at the International Space Science Institute (ISSI, Bern), and the COST Action TOSCA (Towards a more complete understanding of the solar influence on climate).

This research was supported in part by 80NSSC18K1304 and NNX15AK59G.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Amblard, P.-O., Moussaoui, S., Dudok De Wit, T., Aboudarham, J., Kretzschmar, M., Lilensten, J., Auchère, F.: 2008, The EUV Sun as the superposition of elementary Suns. Astron. Astrophys.487, L13. ADSCrossRefGoogle Scholar
  2. Ball, W., Schmutz, W., Fehlmann, A., Finsterle, W., Walter, B.: 2016, Assessing the beginning to end-of-mission sensitivity change of the PREcision MOnitor Sensor total solar irradiance radiometer (PREMOS/PICARD). J. Space Weather Space Clim.6, A32. DOI. ADSCrossRefGoogle Scholar
  3. Balmaceda, L.A., Solanki, S.K., Krivova, N.A., Foster, S.: 2009, A homogeneous database of sunspot areas covering more than 130 years. J. Geophys. Res.114, 1. DOI. CrossRefGoogle Scholar
  4. Beaufays, F., Sak, H., Senior, A.: 2014, Long Short-Term Memory Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition. arXiv.
  5. Breiman, L.: 1996, Bagging predictors. Mach. Learn.24, 123. DOI. CrossRefzbMATHGoogle Scholar
  6. Brueckner, G.E., Edlow, K.L., Floyd, L.E. IV, Lean, J.L., VanHoosier, M.E.: 1993, The Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) experiment on board the Upper Atmosphere Research Satellite (UARS). J. Geophys. Res., Atmos.98, 10695. DOI. ADSCrossRefGoogle Scholar
  7. Carlisle, C., Wedge, R., Wu, D., Stello, H., Robinson, R.: 2015, Total and Spectral Solar Irradiance Sensor (TSIS) Project Overview. ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150023359.pdf.
  8. Carroll, R.J., Ruppert, D.: 1996, The use and misuse of orthogonal regression in linear errors-in-variables models. Am. Stat.50, 1. Google Scholar
  9. Cherkauer, K.J.: 1996, Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks. In: Working notes of the AAAI workshop on integrating multiple learned models, AAAI Press, Portland. Google Scholar
  10. Clevert, D.-A., Unterthiner, T., Hochreiter, S.: 2015, Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). arXiv.
  11. Coddington, O., Lean, J.L., Pilewskie, P., Snow, M., Lindholm, D.: 2015, A solar irradiance climate data record. Bull. Am. Meteorol. Soc.97, 1265. DOI. CrossRefGoogle Scholar
  12. Crommelynck, D., Domingo, V.: 1984, Solar irradiance observations. Science225, 180. DOI. ADSCrossRefGoogle Scholar
  13. Dewitte, S., Nevens, S.: 2016, The total solar irradiance climate data record. Astrophys. J.830, 1. DOI. CrossRefGoogle Scholar
  14. Dudok de Wit, T.: 2011, A method for filling gaps in solar irradiance and solar proxy data. Astron. Astrophys.533, A29. DOI. ADSCrossRefGoogle Scholar
  15. Dudok de Wit, T., Bruinsma, S., Shibasaki, K.: 2014, Synoptic radio observations as proxies for upper atmosphere modelling. J. Space Weather Space Clim.4, A06. DOI. CrossRefGoogle Scholar
  16. Dudok de Wit, T., Kopp, G., Fröhlich, C., Schöll, M.: 2017, Methodology to create a new total solar irradiance record: Making a composite out of multiple data records. Geophys. Res. Lett.44, 1196. DOI. ADSCrossRefGoogle Scholar
  17. Elizondo, D., Hoogenboom, G., McClendon, R.W.: 1994, Development of a neural network model to predict daily solar radiation. Agric. For. Meteorol.71, 115. ADSCrossRefGoogle Scholar
  18. Ermolli, I., Matthes, K., Dudok De Wit, T., Krivova, N.A., Tourpali, K., Weber, M., Unruh, Y.C., Gray, L., Langematz, U., et al.: 2013, Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys.13, 3945. DOI. ADSCrossRefGoogle Scholar
  19. Fligge, M., Solanki, S.K., Unruh, Y.C.: 2000, Modelling irradiance variations from the surface distribution of the solar magnetic field. Astron. Astrophys.353, 380. ADSGoogle Scholar
  20. Floyd, L.E., Cook, J.W., Herring, L.C., Crane, P.C.: 2003, SUSIM’S 11-year observational record of the solar UV irradiance. Adv. Space Res.31, 2111. DOI. ADSCrossRefGoogle Scholar
  21. Foukal, P., Ortiz, A., Schnerr, R.: 2011, Dimming of the 17th century sun. Astrophys. J. Lett.733, L38. ADSCrossRefGoogle Scholar
  22. Fröhlich, C.: 2007, Solar irradiance variability since 1978. In: Calisesi, Y., Bonnet, M., Gray, L., Langen, J., Lockwood, M. (eds.) Solar Variability and Planetary Climates, Springer, New York, 53. CrossRefGoogle Scholar
  23. Fröhlich, C.: 2003, Long-term behaviour of space radiometers. Metrologia40, S60. DOI. CrossRefGoogle Scholar
  24. Fröhlich, C.: 2012, Total solar irradiance observations. Surv. Geophys.33, 453. ADSCrossRefGoogle Scholar
  25. Gardner, M.W., Dorling, S.R.: 1998, Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ.32, 2627. DOI. ADSCrossRefGoogle Scholar
  26. Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., et al.: 2010, Solar influences on climate. Rev. Geophys.48, RG4001. DOI. ADSCrossRefGoogle Scholar
  27. Haigh, J.D.: 1994, The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature370, 544. DOI. ADSCrossRefGoogle Scholar
  28. Haigh, J.D.: 2007, The Sun and the Earth’s climate. Liv. Rev. Solar Phys.4, 2. DOI. ADSCrossRefGoogle Scholar
  29. Haigh, J.D., Winning, A.R., Toumi, R., Harder, J.W.: 2010, An influence of solar spectral variations on radiative forcing of climate. Nature467, 696. DOI. ADSCrossRefGoogle Scholar
  30. Hansen, L.K., Salamon, P.: 1990, Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell.12, 993. CrossRefGoogle Scholar
  31. Harder, J., Lawrence, G., Fontenla, J., Rottman, G., Woods, T.: 2005, The spectral irradiance monitor: Scientific requirements, instrument design, and operation modes. In: Rottman, G., Woods, T., George, V. (eds.) The Solar Radiation and Climate Experiment (SORCE), Springer, New York, 141. CrossRefGoogle Scholar
  32. Harder, J., Fontenla, J.M., Pilewskie, P., Richard, E.C., Woods, T.N.: 2009, Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett.36, 1. DOI. CrossRefGoogle Scholar
  33. Heath, D.F., Schlesinger, B.M.: 1986, The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res., Atmos.91, 8672. ADSCrossRefGoogle Scholar
  34. Hornik, K., Stinchcombe, M., White, H.: 1989, Multilayer feedforward networks are universal approximators. Neural Netw.2, 359. DOI. CrossRefzbMATHGoogle Scholar
  35. Hoyt, D.V., Kyle, H.L., Hickey, J.R., Maschhoff, R.H.: 1992, The Nimbus 7 solar total irradiance: A new algorithm for its derivation. J. Geophys. Res.97, 51. DOI. ADSCrossRefGoogle Scholar
  36. Hudson, H.S., Silva, S., Woodard, M., Willson, R.C.: 1982, The effects of sunspots on solar irradiance. Solar Phys.76, 211. DOI. ADSCrossRefGoogle Scholar
  37. Jin, F., Sun, S.: 2008, Neural network multitask learning for traffic flow forecasting. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), IEEE Press, New York 1897. Google Scholar
  38. Kingma, D.P., Ba, J.: 2014, Adam: A Method for Stochastic Optimization. arXiv.
  39. Kopp, G., Lawrence, G.: 2005, The total irradiance monitor (TIM): Instrument design. In: Rottman, G., Woods, T., George, V. (eds.) The Solar Radiation and Climate Experiment (SORCE), Springer, New York, 91. CrossRefGoogle Scholar
  40. Kopp, G., Lean, J.L.: 2011, A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett.38, 1. DOI. CrossRefGoogle Scholar
  41. Kren, A.C.: 2015, Investigating the role of the Sun, the quasi-biennial oscillation, and the pacific decadal oscillation on decadal climate variability of the stratosphere. Atmospheric & Oceanic Sciences Graduate Theses & Dissertations, University of Colorado at Boulder. Google Scholar
  42. Krivova, N.A., Solanki, S.K., Fligge, M., Unruh, Y.C.: 2003, Reconstruction of solar irradiance variations in Cycle 23: Is solar surface magnetism the cause? Astron. Astrophys.399, L1. ADSCrossRefGoogle Scholar
  43. Krivova, N.A., Solanki, S.K., Floyd, L.: 2006, Reconstruction of solar UV irradiance in Cycle 23. Astron. Astrophys.452, 631. ADSCrossRefGoogle Scholar
  44. Krizhevsky, A., Sutskever, I., Hinton, G.E.: 2012, ImageNet classification with deep convolutional neural networks. Adv. Neural Info. Proc. Syst. 1097. citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.299.205
  45. LASP: 2019, SORCE SIM Release Notes for Version 25, Level 3 data product. http://lasp.colorado.edu/home/sorce/files/2019/03/SORCE_SIM_Release_Notes_for_Version25.pdf.
  46. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: 1997, Face recognition: A convolutional neural-network approach. IEEE Trans. Neural Netw.8, 98. DOI. CrossRefGoogle Scholar
  47. Lean, J.: 2000, Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys. Res. Lett.27, 2425. ADSCrossRefGoogle Scholar
  48. Lean, J.: 1990, A comparison of models of the Sun’s extreme ultraviolet irradiance variations. J. Geophys. Res.95, 11933. ADSCrossRefGoogle Scholar
  49. Lean, J., Rottman, G., Harder, J., Kopp, G.: 2005, SORCE contributions to new understanding of global change and solar variability. Solar Phys.230, 27. DOI. ADSCrossRefGoogle Scholar
  50. Lean, J.L., DeLand, M.T.: 2012, How does the Sun’s spectrum vary? J. Climate25, 2555. DOI. ADSCrossRefGoogle Scholar
  51. Lean, J.L., Woods, T.N.: 2010, Solar spectral irradiance: Measurements and models. In: Schrijver, C.J., Siscoe, L., George, L. (eds.) Heliophysics: Evolving Solar Activity and the Climates of Space and Earth, Cambridge University Press, Cambridge, 269. CrossRefGoogle Scholar
  52. LeCun, Y., Bengio, Y., Hinton, G.: 2015, Deep learning. Nature521, 436. DOI. ADSCrossRefGoogle Scholar
  53. Lee, R.B., Gibson, M.A., Wilson, R.S., Thomas, S.: 1995, Long-term total solar irradiance variability during sunspot Cycle 22. J. Geophys. Res.100, 1667. DOI. ADSCrossRefGoogle Scholar
  54. Levelt, P.F., van den Oord, G.H.J., Dobber, M.R., Malkki, A., Visser, H., de Vries, J., Stammes, P., Lundell, J.O.V., Saari, H.: 2006, The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens.44, 1093. ADSCrossRefGoogle Scholar
  55. Marchenko, S., DeLand, M.: 2018, OMI Solar Spectral Irradiance Data (UPDATE). sbuv2.gsfc.nasa.gov/solar/omi/. Accessed 11 May 2019.
  56. Marchenko, S.V., Deland, M.T.: 2014, Solar spectral irradiance changes during Cycle 24. Astrophys. J.789, 117. DOI. ADSCrossRefGoogle Scholar
  57. Marchenko, S.V., DeLand, M.T., Lean, J.L.: 2016, Solar spectral irradiance variability in Cycle 24: Observations and models. J. Space Weather Space Clim.40, 1. DOI. CrossRefGoogle Scholar
  58. Matthes, K., Funke, B., Anderson, M., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M., Dudok de Wit, T., Haberreiter, M., et al.: 2017, Solar forcing for CMIP6 (v3.2). Geosci. Model Dev.10, 2247. ADSCrossRefGoogle Scholar
  59. Mauceri, S., Pilewskie, P., Richard, E., Coddington, O., Harder, J., Woods, T.: 2018, Revision of the Sun’s spectral irradiance as measured by SORCE SIM. Solar Phys.293, 161. DOI. ADSCrossRefGoogle Scholar
  60. McClintock, W.E., Rottman, G.J., Woods, T.N.: 2005, Solar-stellar irradiance comparison experiment II (SOLSTICE II): instrument concept and design. In: Rottman, G., Woods, T., George, V. (eds.) The Solar Radiation and Climate Experiment (SORCE), Springer, New York, 225. CrossRefGoogle Scholar
  61. Mekaoui, S., Dewitte, S.: 2008, Total solar irradiance measurement and modelling during Cycle 23. Solar Phys.247, 203. DOI. ADSCrossRefGoogle Scholar
  62. Mellit, A., Pavan, A.M.: 2010, A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Solar Energy84, 807. ADSCrossRefGoogle Scholar
  63. Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., Khudanpur, S.: 2010, Recurrent neural network based language model. In: Eleventh Ann. Conf. International Speech Comm. Assoc., 1045. Google Scholar
  64. Mohandes, M., Rehman, S., Halawani, T.O.: 1998, Estimation of global solar radiation using artificial neural networks. Renew. Energy14, 179. CrossRefGoogle Scholar
  65. Pilewskie, P., Kopp, G., Richard, E., Coddington, O., Sparn, T., Woods, T.: 2018, TSIS-1 and continuity of the total and spectral solar irradiance climate data record. In: EGU General Assembly Conf. Abs., 5527. Google Scholar
  66. Rempel, M., Schlichenmaier, R.: 2011, Sunspot modeling: From simplified models to radiative MHD simulations. Liv. Rev. Solar Phys.8, 3. ADSGoogle Scholar
  67. Richard, E., Harber, D., Drake, G., Rutkowsi, J., Castleman, Z., Smith, M., Sprunck, J., Zheng, W., Smith, P., et al.: 2019, The compact spectral irradiance monitor flight demonstration mission. In: Thomas, S., Pagano, D., Charles, D., Norton, R., Sachidananda, R.B. (eds.) CubeSats and SmallSats for Remote Sensing III, SPIE, Bellingham 15. Google Scholar
  68. Rottman, G., Woods, T., Snow, M., DeToma, G.: 2001, The solar cycle variation in ultraviolet irradiance. Adv. Space Res.27, 1927. DOI. ADSCrossRefGoogle Scholar
  69. Schöll, M., Dudok de Wit, T., Kretzschmar, M., Haberreiter, M.: 2016, Making of a solar spectral irradiance dataset I: Observations, uncertainties, and methods. J. Space Weather Space Clim.6, A14. DOI. ADSCrossRefGoogle Scholar
  70. Seltzer, M.L., Droppo, J.: 2013, Multi-task learning in deep neural networks for improved phoneme recognition. IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Vancouver, 6965. Google Scholar
  71. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., et al.: 2016, Mastering the game of Go with deep neural networks and tree search. Nature529, 484. DOI. ADSCrossRefGoogle Scholar
  72. Snow, M., Mcclintock, W.E., Woods, T.N., White, O.R., Harder, J.W., Rottman, G.: 2005, The Mg ii index from SORCE. In: Rottman, G., Woods, T., George, V. (eds.) The Solar Radiation and Climate Experiment (SORCE), Springer, New York, 325. CrossRefGoogle Scholar
  73. Snow, M., Weber, M., Machol, J., Viereck, R., Richard, E.: 2014, Comparison of Magnesium II core-to-wing ratio observations during solar minimum 23/24. J. Space Weather Space Clim.4, A04. DOI. CrossRefGoogle Scholar
  74. Spearman, C.: 1904, The proof and measurement of association between two things. Am. J. Psychol.15, 72. CrossRefGoogle Scholar
  75. Tapping, K.F.: 1987, Recent solar radio astronomy at centimeter wavelengths: The temporal variability of the 10.7-cm flux. J. Geophys. Res., Atmos.92, 829. ADSCrossRefGoogle Scholar
  76. Tapping, K.F.: 2013, The 10.7 cm solar radio flux (F10.7). Space Weather11, 394. ADSCrossRefGoogle Scholar
  77. Tebabal, A., Damtie, B., Nigussie, M., Bires, A., Yizengaw, E.: 2015, Modeling total solar irradiance from PMOD composite using feed-forward neural networks. J. Atmos. Solar-Terr. Phys.135, 64. DOI. ADSCrossRefGoogle Scholar
  78. Tebabal, A., Damtie, B., Nigussie, M., Yizengaw, E.: 2017, Temporal variations in solar irradiance since 1947. Solar Phys.292, 1. DOI. CrossRefGoogle Scholar
  79. Tobiska, W.K.: 1996, Current status of solar EUV measurements and modeling. Adv. Space Res.18, 3. ADSCrossRefGoogle Scholar
  80. Viereck, R., Puga, L., McMullin, D., Judge, D., Weber, M., Tobiska, W.K.: 2001, The Mg ii index: A proxy for solar EUV. Geophys. Res. Lett.28, 1343. ADSCrossRefGoogle Scholar
  81. Viereck, R.A., Floyd, L.E., Crane, P.C., Woods, T.N., Knapp, B.G., Rottman, G., Weber, M., Puga, L.C., DeLand, M.T.: 2004, A composite Mg ii index spanning from 1978 to 2003. Space Weather2, S10005. DOI. ADSCrossRefGoogle Scholar
  82. Walton, S.R., Preminger, D.G., Chapman, G.A.: 2003, The contribution of faculae and network to long-term changes in the total solar irradiance. Astrophys. J.590, 1088. ADSCrossRefGoogle Scholar
  83. West, D., Dellana, S., Qian, J.: 2005, Neural network ensemble strategies for financial decision applications. Comput. Oper. Res.32, 2543. DOI. CrossRefzbMATHGoogle Scholar
  84. Willson, R.: 1994, Irradiance Observations of SMM, Spacelab 1, UARS, and ATLAS Experiments. In: Int. Astron. Union Colloq.143, 54. DOI. CrossRefGoogle Scholar
  85. Willson, R.C.: 2001, The ACRIMSAT/ACRIM III experiment—extending the precision, long-term total solar irradiance climate database. Earth Obs.13, 14. Google Scholar
  86. Willson, R.C.: 2014, ACRIM3 and the total solar irradiance database. Astrophys. Space Sci.352, 341. DOI. ADSCrossRefGoogle Scholar
  87. Willson, R.C., Hudson, H.S.: 1991, The Sun’s luminosity over a complete solar cycle. Nature351, 42. DOI. ADSCrossRefGoogle Scholar
  88. Willson, R.C., Mordvinov, A.V.: 2003, Secular total solar irradiance trend during Solar Cycles 21–23. Geophys. Res. Lett.30, 1199. DOI. ADSCrossRefGoogle Scholar
  89. Woods, T.N., Chamberlin, P.C., Harder, J.W., Hock, R.A., Snow, M., Eparvier, F.G., Fontenla, J., McClintock, W.E., Richard, E.C.: 2009, Solar irradiance reference spectra (SIRS) for the 2008 whole heliosphere interval (WHI). Geophys. Res. Lett.36, 1. DOI. CrossRefGoogle Scholar
  90. Woods, T.N., Eparvier, F.G., Bailey, S.M., Chamberlin, P.C., Lean, J., Rottman, G.J., Solomon, S.C., Tobiska, W.K., Woodraska, D.L.: 2005, Solar EUV Experiment (SEE): Mission overview and first results. J. Geophys. Res.110, A01312. DOI. ADSCrossRefGoogle Scholar
  91. Woods, T.N., Tobiska, W.K., Rottman, G.J., Worden, J.R.: 2000, Improved solar Lyman \(\alpha \) irradiance modeling from 1947 through 1999 based on UARS observations. J. Geophys. Res.105, 27195. DOI. ADSCrossRefGoogle Scholar
  92. Yaya, P., Hecker, L., Dudok de Wit, T., Le Fèvre, C., Bruinsma, S.: 2017, Solar radio proxies for improved satellite orbit prediction. J. Space Weather Space Clim.7, A35. DOI. ADSCrossRefGoogle Scholar
  93. Yeo, K.L., Ball, W.T., Krivova, N.A., Solanki, S.K., Unruh, Y.C., Morrill, J.: 2015, UV solar irradiance in observations and the NRLSSI and SATIRE-S models. J. Geophys. Res.120, 6055. CrossRefGoogle Scholar
  94. Yeo, K.L., Krivova, N.A., Solanki, S.K.: 2017, EMPIRE: A robust empirical reconstruction of solar irradiance variability. J. Geophys. Res.122, 3888. DOI. CrossRefGoogle Scholar
  95. Yeo, K.L., Krivova, N.A., Solanki, S.K., Glassmeier, K.H.: 2014, Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. Astron. Astrophys.570, A85. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Atmospheric and Oceanic SciencesCU BoulderBoulderUSA
  2. 2.Laboratory for Atmospheric and Space PhysicsCU BoulderBoulderUSA
  3. 3.Department of Applied MathematicsCU BoulderBoulderUSA

Personalised recommendations