Skip to main content
Log in

Thermal Properties of Coronal Cavities

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We have analyzed 33 cavities observed between 2012 and 2018, from solar activity maximum to minimum. For each cavity we applied a differential emission measure method to obtain both a temperature distribution and a value of the average temperature. We find that cavities are filled with material hotter than the surrounding streamer, with temperatures in the range of 1.67 – 2.15 MK. Differences between temperatures of cavities and surrounding streamers are in the range of 0.11 – 0.32 MK with an average value of 0.21 MK. We found that temperatures of both, cavities and streamers, vary as a function of different phases of solar activity. During solar maximum the structures are slightly hotter than those observed during solar minimum (1.85 – 2.15 MK vs. 1.67 – 1.88 MK for cavities and streamers, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Aschwanden, M.J., Boerner, P., Schrijver, C.J., Malanushenko, A.: 2013, Automated temperature and emission measure analysis of coronal loops and active regions observed with the atmospheric imaging assembly on the solar dynamics observatory (SDO/AIA). Solar Phys.283, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Boerner, P., Caspi, A., McTiernan, J.M., Ryan, D., Warren, H.: 2015, Benchmark test of differential emission measure codes and multi-thermal energies in solar active regions. Solar Phys.290, 2733. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bąk-Stȩślicka, U., Gibson, S.E., Chmielewska, E.: 2016, Line-of-sight velocity as a tracer of coronal cavity magnetic structure. Front. Astron. Space Sci.3, 7. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bąk-Stȩślicka, U., Gibson, S.E., Fan, Y., Bethge, C., Forland, B., Rachmeler, L.A.: 2013, The magnetic structure of solar prominence cavities: new observational signature revealed by coronal magnetometry. Astrophys. J. Lett.770, 28. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bąk-Stȩślicka, U., Gibson, S.E., Fan, Y., Bethge, C., Forland, B., Rachmeler, L.A.: 2014, The spatial relation between EUV cavities and linear polarization signatures. Proc. IAU Symp.300, Cambridge University Press, Cambridge, 395. DOI . ADS .

  • Berger, T.E., Liu, W., Low, B.C.: 2012, SDO/AIA detection of solar prominence formation within a coronal cavity. Astrophys. J.758, 37. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cheng, X., Zhang, J., Saar, S.H., Ding, M.D.: 2012, Differential emission measure analysis of multiple structural components of coronal mass ejections in the inner corona. Astrophys. J.761, 62. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cheung, M.C.M., Boerner, P., Schrijver, C.J., Testa, P., Chen, F.: 2015, Thermal diagnostics with the atmospheric imaging assembly onboard the solar dynamics observatory: a validated method for differential emission measure inversions. Astrophys. J.807, 143. DOI . ADS .

    Article  ADS  Google Scholar 

  • Forland, B.C., Gibson, S.E., Dove, J.B., Rachmeler, L.A., Fan, Y.: 2013, Coronal cavity survey: morphological clues to eruptive magnetic topologies. Solar Phys.288, 603. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fuller, J., Gibson, S.E.: 2009, A survey of coronal cavity density profiles. Astrophys. J.700, 1205. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fuller, J., Gibson, S.E., de Toma, G., Fan, Y.: 2008, Observing the unobservable? Modeling coronal cavity densities. Astrophys. J.678, 515. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gibson, S.E.: 2015, Coronal cavities: observations and implications for the magnetic environment of prominences. In: Vial, J.-C., Engvold, O. (eds.) Astrophys. Space Sci. Lib.415, 323. DOI . ADS .

    Chapter  Google Scholar 

  • Gibson, S.E.: 2018, Solar prominences: theory and models. Fleshing out the magnetic skeleton. Living Rev. Solar Phys.15, 7. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gibson, S.E., Foster, D., Burkepile, J., de Toma, G., Stanger, A.: 2006, The calm before the storm: the link between quiescent cavities and coronal mass ejections. Astrophys. J.641, 590. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gibson, S.E., Kucera, T.A., Rastawicki, D., Dove, J., de Toma, G.: 2010, Three-dimensional morphology of a coronal prominence cavity. Astrophys. J.724, 1133. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grigis, P., Su, Y., Weber, M.: 2012. AIA PSF Characterization and Image Deconvolution. https://hesperia.gsfc.nasa.gov/ssw/sdo/aia/idl/psf/DOC/psfreport.pdf .

  • Guhathakurta, M., Rottman, G.J., Fisher, R.R., Orrall, F.Q., Altrock, R.C.: 1992, Coronal density and temperature structure from coordinated observations associated with the total solar eclipse of 1988 March 18. Astrophys. J.388, 633. DOI . ADS .

    Article  ADS  Google Scholar 

  • Habbal, S.R., Druckmueller, M., Morgan, H., Scholl, I., Rusin, V., Daw, A., et al.: 2010, Total solar eclipse observations of hot prominence shrouds. Astrophys. J.719, 1362. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hannah, I.G., Kontar, E.P.: 2012, Differential emission measures from the regularized inversion of Hinode and SDO data. Astron. Astrophys.539, A146. DOI . ADS .

    Article  ADS  Google Scholar 

  • Heinzel, P., Schmieder, B., Fárnik, F., Schwartz, P., Labrosse, N., Kotrč, P., et al.: 2008, Hinode, TRACE, SOHO, and ground-based observations of a quiescent prominence. Astrophys. J.686, 1383. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hudson, H.S., Schwenn, R.: 2000, Hot cores in coronal filament cavities. Adv. Space Res.25, 1859. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hudson, H.S., Acton, L.W., Harvey, K.A., McKenzie, D.M.: 1999, A stable filament cavity with a hot core. Astrophys. J.513, 83. DOI . ADS .

    Article  ADS  Google Scholar 

  • Illing, R.M., Hundhausen, J.R.: 1986, Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection. J. Geophys. Res.91, 10951. DOI . ADS .

    Article  ADS  Google Scholar 

  • Karna, N., Zhang, J., Pesnell, W.D.: 2017, The formation and maintenance of the dominant southern polar crown cavity of cycle 24. Astrophys. J.835, 135. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kucera, T.A., Gibson, S.E., Schmit, D.J., Landi, E., Tripathi, D.: 2012, Temperature and EUV intensity in a coronal prominence cavity. Astrophys. J.757, 73. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys.275, 17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Low, B.C.: 1994, Magnetohydrodynamic processes in the solar corona: flares, coronal mass ejections, and magnetic helicity. Phys. Plasmas1, 1684. DOI . ADS .

    Article  ADS  Google Scholar 

  • Low, B.C., Hundhausen, J.R.: 1995, Magnetostatic structures of the solar corona. II: the magnetic topology of quiescent prominences. Astrophys. J.443, 818. DOI . ADS .

    Article  ADS  Google Scholar 

  • Maričič, D., Vršnak, B., Stanger, A.L., Veronig, A.M.: 2004, Coronal mass ejection of 15 May 2001: I. Evolution of morphological features of the eruption. Solar Phys.225, 337. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marqué, C.: 2004, Radio metric observations of quiescent filament cavities. Astrophys. J.602, 1037. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marqué, C., Lantos, P., Delaboudinère, J.-P.: 2002, Multi wavelength investigation of the eruption of a sigmoidal quiescent filament. Astron. Astrophys.387, 317. DOI . ADS .

    Article  ADS  Google Scholar 

  • McCauley, P.I., Su, Y.N., Schanche, N., Evans, K.E., Su, C., McKillop, S., et al.: 2015, Prominence and filament eruptions observed by the solar dynamics observatory: statistical properties, kinematics, and online catalog. Solar Phys.290, 1703. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys.275, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pneuman, G.W.: 1972, Temperature-density structure in coronal helmets: the quiescent prominence and coronal cavity. Astrophys. J.177, 793. DOI . ADS .

    Article  ADS  Google Scholar 

  • Poduval, B., DeForest, C.E., Schmelz, J.T., Pathak, S.: 2013, Point-spread function for the extreme-ultraviolet channels of SDO/AIa telescopes. Astrophys. J.765, 144. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reeves, K.K., Gibson, S.E., Kucera, T.A., Hudson, H.S., Kano, R.: 2012, Thermal properties of a solar coronal cavity observed with the X-ray telescope on Hinode. Astrophys. J.746, 146. DOI . ADS .

    Article  ADS  Google Scholar 

  • Régnier, S., Walsh, R.W., Alexander, C.E.: 2011, A new look at a polar crown cavity as observed by SDO/AIA. Structure and dynamics. Astron. Astrophys.533, L1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schmelz, J.T., Saar, S.H., DeLuca, E.E., Golub, L., Kashyap, V.L., Weber, M.A., et al.: 2009, Hinode X-ray telescope detection of hot emission from quiescent active regions: a nanoflare signature? Astrophys. J. Lett.693, L131. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schmelz, J.T., Worley, B.T., Anderson, D.J., Pathak, S., Kimble, J.A., Jenkins, B.S., et al.: 2011, Isothermal and multithermal analysis of coronal loops observed with atmospheric imaging assembly. II. 211 Å selected loops. Astrophys. J.739(1), 33. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schmit, D.J., Gibson, S.E., Tomczyk, S., Reeves, K.K., Sterling, C., Brooks, D.H., et al.: 2009, Large-scale flows in prominence cavities. Astrophys. J.700, L96. DOI . ADS .

    Article  ADS  Google Scholar 

  • Su, Y., Veronig, A.M., Hannah, I.G., Cheung, M.C.M., Dennis, B.R., Holman, G.D., et al.: 2018, Determination of differential emission measure from solar extreme ultraviolet images. Astrophys. J. Lett.856, L17. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tandberg-Hanssen, E.: 1995, The Nature of Solar Prominences, 2nd edn. Kluwer, Dordrecht. DOI . ADS .

    Book  Google Scholar 

  • Tomczyk, S., Card, G.L., Darnell, T., Elmore, D.F., Lull, R., Nelson, P., et al.: 2008, An instrument to measure coronal emission line polarization. Solar Phys.247, 411. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vásquez, A.M., Frazin, R.A., Kamalabadi, F.: 2009, 3D temperatures and densities of the solar corona via multi-spacecraft EUV tomography: analysis of prominence cavities. Solar Phys.256, 73. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Maričič, D., Stanger, A.L., Veronig, A.M.: 2004, Coronal mass ejection of 15 May 2001: II. Coupling of the cme acceleration and the flare energy release. Solar Phys.225, 355. DOI . ADS .

    Article  ADS  Google Scholar 

  • Waldmeier, M.: 1941, Ergebnisse und Probleme der Sonnenforschung, Geest and Portig, Leipzig, 234. ADS .

    Google Scholar 

  • Weber, M.A., DeLuca, E.E., Golub, L., Sette, A.L.: 2004, Diagnostics with multichannel imaging telescopes. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Proc. IAU Symp.223, Cambridge University Press, Cambridge, 312. DOI . ADS .

    Chapter  Google Scholar 

Download references

Acknowledgements

We acknowledge Craig DeForest and Ewa Chmielewska for valuable suggestions and comments. MS acknowledges financial support from the Polish National Science Centre grant 2015/19/B/ST9/02826. This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urszula Ba̧k-Stȩślicka.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ba̧k-Stȩślicka, U., Gibson, S.E. & Stȩślicki, M. Thermal Properties of Coronal Cavities. Sol Phys 294, 164 (2019). https://doi.org/10.1007/s11207-019-1554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1554-z

Keywords

Navigation