Advertisement

Solar Physics

, 294:150 | Cite as

Submillimeter Radiation as the Thermal Component of the Neupert Effect

  • Jorge F. Valle Silva
  • C. Guillermo Giménez de CastroEmail author
  • Paulo J. A. Simões
  • Jean-Pierre Raulin
Article

Abstract

The Neupert effect is the empirical observation that the temporal evolution of non-thermal emission (e.g. hard X-rays) is frequently proportional to the temporal derivative of the thermal emission flux (soft X-rays), or vice versa, that time-integrated non-thermal flux is proportional to thermal flux. We analyzed the GOES M2.2 event SOL2011-02-14T17:25, and we found that the 212 GHz emission plays quite well the role of the thermal component of the Neupert effect. We show that the maximum of the hard X-ray flux for energies above 50 keV is coincident in time with the temporal derivative of the 212 GHz flux, within the uncertainties. The microwave flux density at 15.4 GHz, produced by optically thin gyrosynchrotron mechanism, and hard-X rays above 25 keV mark the typical impulsive phase, and they have similar temporal evolution. On the other hand, the 212 GHz emission is delayed by about 25 seconds with respect to the microwave and hard X-ray peak. We argue that this delay cannot be explained by magnetic trapping of non-thermal electrons. With all of the observational evidence, we suggest that the 212 GHz emission is produced by thermal bremsstrahlung, initially in the chromosphere, and shifting to optically thin emission from the hot coronal loops at the end of the gradual phase.

Keywords

Flares, dynamics Flares, X-rays Flares submillimeter radiation Chromospheric evaporation 

Notes

Acknowledgments

The authors are grateful to Hugh Hudson for his enlightening comments about the Neupert effect and its history. J.F. Valle Silva acknowledges FAPESP for the support during his PhD Thesis (grant 2012/1619-9) and CAPES for the Postdoctoral PNPD contract. G. Giménez de Castro and J.-P. Raulin acknowledge CNPq (contracts 305203/2016-9 and 312066/2016-3). The research leading to these results has received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under grant agreement no. 606862 (F-CHROMA), CAPES grant 88881.310386/2018-01, FAPESP grant 2013/24155-3 and the US Air Force Office for Scientific Research (AFOSR) grant FA9550-16-1-0072. AIA data are courtesy of NASA/SDO and the AIA science team. This work is based on data acquired at Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juán.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Allred, J.C., Kowalski, A.F., Carlsson, M.: 2015, A unified computational model for solar and stellar flares. Astrophys. J.809, 104. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Antonucci, E., Gabriel, A.H., Dennis, B.R.: 1984, The energetics of chromospheric evaporation in solar flares. Astrophys. J.287, 917. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Bastian, T.S., Benz, A.O., Gary, D.E.: 1998, Radio emission from solar flares. Annu. Rev. Astron. Astrophys.36, 131. ADS. ADSCrossRefGoogle Scholar
  4. Carlsson, M.: 1998, Radiative transfer and radiation hydrodynamics. In: Vial, J.C., Bocchialini, K., Boumier, P. (eds.) Space Solar Physics: Theoretical and Observational Issues in the Context of the SOHO Mission; Proc. of a Summer School, Lecture Notes in Physics507, Springer, New York, 163. DOI. ADS. CrossRefGoogle Scholar
  5. Carlsson, M., Stein, R.F.: 1995, Does a nonmagnetic solar chromosphere exist? Astrophys. J. Lett.440, L29. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Costa, J.E.R., Silva, A.V.R., Lüdi, A., Magun, A.: 2002, Beam profile determination by tomography of solar scans. Astron. Astrophys.387, 1153. ADS. ADSCrossRefGoogle Scholar
  7. Cristiani, G., Martinez, G., Mandrini, C.H., Giménez de Castro, C.G., da Silva, C.W., Rovira, M.G., Kaufmann, P.: 2007, Spatial characterization of a flare using radio observations and magnetic field topology. Solar Phys.240, 271. DOI. ADSCrossRefGoogle Scholar
  8. Dulk, G.A.: 1985, Radio emission from the Sun and stars. Annu. Rev. Astron. Astrophys.23, 169. ADS. ADSCrossRefGoogle Scholar
  9. Fleishman, G.D., Kontar, E.P.: 2010, Sub-Thz radiation mechanisms in solar flares. Astrophys. J. Lett.709, L127. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Frost, K.J.: 1964, Comments on high energy X-ray bursts observed by OSO I. NASASP-50, 139. ADS. ADSGoogle Scholar
  11. Giménez de Castro, C.G., Raulin, J.-P., Makhmutov, V.S., Kaufmann, P., Costa, J.E.R.: 1999, Instantaneous positions of microwave solar bursts: Properties and validity of the multiple beam observations. Astron. Astrophys. Suppl. Ser.140, 373. ADS. ADSCrossRefGoogle Scholar
  12. Giménez de Castro, C.G., Trottet, G., Silva-Valio, A., Krucker, S., Costa, J.E.R., Kaufmann, P., Correia, E., Levato, H.: 2009, Submillimeter and X-ray observations of an X class flare. Astron. Astrophys.507, 433. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Guidice, D.A., Cliver, E.W., Barron, W.R., Kahler, S.: 1981, The air force RSTN system. Bull. Am. Astron. Soc.13, 553. ADS. ADSGoogle Scholar
  14. Heinzel, P., Avrett, E.H.: 2012, Optical-to-radio continua in solar flares. Solar Phys.277, 31. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Herrmann, R., Magun, A., Costa, J.E.R., Correia, E., Kaufmann, P.: 1992, A multibeam antenna for solar mm-wave burst observations with high spatial and temporal resolution. Solar Phys.142, 157. ADS. ADSCrossRefGoogle Scholar
  16. Hudson, H.S.: 1991, Differential emission-measure variations and the “Neupert effect”. Bull. Am. Astron. Soc.23, 1064. ADS. Google Scholar
  17. Hudson, H.S., Ohki, K.: 1972, Soft X-ray and microwave observations of hot regions in solar flares. Solar Phys.23, 155. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Kašparová, J., Heinzel, P., Karlický, M., Moravec, Z., Varady, M.: 2009, Far-IR and radio thermal continua in solar flares. Cent. Eur. Astrophys. Bull.33, 309. ADS. ADSGoogle Scholar
  19. Kaufmann, P., Raulin, J.-P.: 2006, Can microbunch instability on solar flare accelerated electron beams account for bright broadband coherent synchrotron microwaves? Phys. Plasmas13, 701. DOI. ADS. CrossRefGoogle Scholar
  20. Kaufmann, P., Levato, H., Cassiano, M.M., Correia, E., Costa, J.E.R., Giménez de Castro, C.G., Godoy, R., Kingsley, R.K., Kingsley, J.S., Kudaka, A.S., Marcon, R., Martin, R., Marun, A., Melo, A.M., Pereyra, P., Raulin, J.-P., Rose, T., Silva Valio, A., Walber, A., Wallace, P., Yakubovich, A., Zakia, M.B.: 2008, New telescopes for ground-based solar observations at submillimeter and mid-infrared. In: Soc. Photo-Opt. Instrum. Eng. (SPIE)CS-7012. DOI. ADS. CrossRefGoogle Scholar
  21. Kaufmann, P., White, S.M., Freeland, S.L., Marcon, R., Fernandes, L.O.T., Kudaka, A.S., de Souza, R.V., Aballay, J.L., Fernandez, G., Godoy, R., Marun, A., Valio, A., Raulin, J.-P., Giménez de Castro, C.G.: 2013, A bright impulsive solar burst detected at 30 THz. Astrophys. J.768, 134. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Kaufmann, P., Abrantes, A., Bortolucci, E., Caspi, A., Fernandes, L.O.T., Kropotov, G., Kudaka, A., Laurent, G.T., Machado, N., Marcon, R., Marun, A., Nicolaev, V., Hidalgo Ramirez, R.F., Raulin, J.-P., Saint-Hilaire, P., Shih, A., Silva, C., Timofeevsky, A.: 2016, Solar observations at THz frequencies on board of a trans-Antartic stratospheric balloon flight. In: AAS/Solar Phys. Div. Meet.47, 6.11. ADS. Google Scholar
  23. Kleint, L., Heinzel, P., Judge, P., Krucker, S.: 2016, Continuum enhancements in the ultraviolet, the visible and the infrared during the X1 flare on 2014 March 29. Astrophys. J.816, 88. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Krucker, S., Giménez de Castro, C.G., Hudson, H.S., Trottet, G., Bastian, T.S., Hales, A.S., Kašparová, J., Klein, K.-L., Kretzschmar, M., Lüthi, T., Mackinnon, A., Pohjolainen, S., White, S.M.: 2013, Solar flares at submillimeter wavelengths. Astron. Astrophys. Rev.21, 58. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Lüthi, T., Lüdi, A., Magun, A.: 2004, Determination of the location and effective angular size of solar flares with a 210 GHz multibeam radiometer. Astron. Astrophys.420, 361. ADS. ADSCrossRefGoogle Scholar
  26. Lüthi, T., Magun, A., Miller, M.: 2004, First observation of a solar X-class flare in the submillimeter range with KOSMA. Astron. Astrophys.415, 1123. ADS. ADSCrossRefGoogle Scholar
  27. McAteer, R.T.J., Bloomfield, D.S.: 2013, The bursty nature of solar flare X-ray emission. II. The Neupert effect. Astrophys. J.776, 66. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Meegan, C., Lichti, G., Bhat, P.N., Bissaldi, E., Briggs, M.S., Connaughton, V., Diehl, R., Fishman, G., Greiner, J., Hoover, A.S., van der Horst, A.J., von Kienlin, A., Kippen, R.M., Kouveliotou, C., McBreen, S., Paciesas, W.S., Preece, R., Steinle, H., Wallace, M.S., Wilson, R.B., Wilson-Hodge, C.: 2009, The Fermi Gamma-ray Burst Monitor. Astrophys. J.702, 791. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Neupert, W.M.: 1968, Comparison of solar X-ray line emission with microwave emission during flares. Astrophys. J. Lett.153, L59. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Penn, M., Krucker, S., Hudson, H., Jhabvala, M., Jennings, D., Lunsford, A., Kaufmann, P.: 2016, Spectral and imaging observations of a white-light solar flare in the mid-infrared. Astrophys. J. Lett.819, L30. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Pick, M., Vilmer, N.: 2008, Sixty-five years of solar radioastronomy: Flares, coronal mass ejections and Sun Earth connection. Astron. Astrophys. Rev.16, 6. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Ramaty, R., Schwartz, R.A., Enome, S., Nakajima, H.: 1994, Gamma-ray and millimeter-wave emissions from the 1991 June X-class solar flares. Astrophys. J.436, 941. ADS. ADSCrossRefGoogle Scholar
  33. Selhorst, C.L., Silva, A.V.R., Costa, J.E.R.: 2005, Solar atmospheric model with spicules applied to radio observation. Astron. Astrophys.433, 365. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Silva, A.V.R., Laganá, T.F., Gimenez Castro, C.G., Kaufmann, P., Costa, J.E.R., Levato, H., Rovira, M.: 2005, Diffuse component spectra of solar active regions at submillimeter wavelengths. Solar Phys.227, 265. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Simões, P.J.A., Kerr, G.S., Fletcher, L., Hudson, H.S., Giménez de Castro, C.G., Penn, M.: 2017, Formation of the thermal infrared continuum in solar flares. Astron. Astrophys.605, A125. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Simões, P.J.A., Reid, H.A.S., Milligan, R.O., Fletcher, L.: 2019, The spectral content of SDO/AIA 1600 and 1700 Å filters from flare and plage observations. Astrophys. J.870(2), 114. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Trottet, G., Rolli, E., Magun, A., Barat, C., Kuznetsov, A., Sunyaev, R., Terekhov, O.: 2000, The fast and slow \(\mbox{H}\upalpha\) chromospheric responses to non-thermal particles produced during the 1991 March 13 hard X-ray/gamma-ray flare at \({\sim}\,08~\mbox{UTC}\). Astron. Astrophys.356, 1067. ADS. ADSGoogle Scholar
  38. Trottet, G., Raulin, J.-P., Kaufmann, P., Siarkowski, M., Klein, K.-L., Gary, D.E.: 2002, First detection of the impulsive and extended phases of a solar radio burst above 200 GHz. Astron. Astrophys.381, 694. ADS. ADSCrossRefGoogle Scholar
  39. Trottet, G., Raulin, J.-P., Giménez de Castro, C.G., Lüthi, T., Caspi, A., Mandrini, C., Luoni, M.L., Kaufmann, P.: 2011, Origin of the submillimeter radio emission during the time-extended phase of a solar flare. Solar Phys.273(2), 340. DOI. ADSCrossRefGoogle Scholar
  40. Trottet, G., Raulin, J.-P., Mackinnon, A., Giménez de Castro, G., Simões, P.J.A., Cabezas, D., de La Luz, V., Luoni, M., Kaufmann, P.: 2015, Origin of the 30 THz emission detected during the solar flare on 2012 March 13 at 17:20 UT. Solar Phys.290, 2809. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Tsap, Y.T., Smirnova, V.V., Morgachev, A.S., Motorina, G.G., Kontar, E.P., Nagnibeda, V.G., Strekalova, P.V.: 2016, On the origin of 140 GHz emission from the 4 July 2012 solar flare. Adv. Space Res.57, 1449. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Vernazza, J.E., Avrett, E.H., Loeser, R.: 1981, Structure of the solar chromosphere. III – Models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. Ser.45, 635. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Veronig, A., Vršnak, B., Dennis, B.R., Temmer, M., Hanslmeier, A., Magdalenić, J.: 2002a, Investigation of the Neupert effect in solar flares. I. Statistical properties and the evaporation model. Astron. Astrophys.392, 699. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Veronig, A., Vršnak, B., Temmer, M., Hanslmeier, A.: 2002b, Relative timing of solar flares observed at different wavelengths. Solar Phys.208, 297. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Veronig, A.M., Brown, J.C., Dennis, B.R., Schwartz, R.A., Sui, L., Tolbert, A.K.: 2005, Physics of the Neupert effect: Estimates of the effects of source energy, mass transport, and geometry using RHESSI and GOES data. Astrophys. J.621, 482. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Wedemeyer, S., Bastian, T., Brajša, R., Hudson, H., Fleishman, G., Loukitcheva, M., Fleck, B., Kontar, E.P., De Pontieu, B., Yagoubov, P., Tiwari, S.K., Soler, R., Black, J.H., Antolin, P., Scullion, E., Gunár, S., Labrosse, N., Ludwig, H.-G., Benz, A.O., White, S.M., Hauschildt, P., Doyle, J.G., Nakariakov, V.M., Ayres, T., Heinzel, P., Karlicky, M., Van Doorsselaere, T., Gary, D., Alissandrakis, C.E., Nindos, A., Solanki, S.K., Rouppe van der Voort, L., Shimojo, M., Kato, Y., Zaqarashvili, T., Perez, E., Selhorst, C.L., Barta, M.: 2016, Solar science with the Atacama Large Millimeter/Submillimeter Array – A new view of our Sun. Space Sci. Rev.200, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  47. White, W.A.: 1964, Solar X rays: A comparison with microwave radiation. NASASP-50, 131. ADS. ADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centro de Rádio Astronomia e Astrofísica Mackenzie, Escola de EngenhariaUniversidade Presbiteriana MackenzieSão PauloBrazil
  2. 2.Instituto e Astronomía y Física del EspacioCONICET-UBABuenos AiresArgentina
  3. 3.SUPA School of Physics & AstronomyUniversity of GlasgowGlasgowUK

Personalised recommendations