Solar Physics

, 294:143 | Cite as

Parametric Study of ICME Properties Related to Space Weather Disturbances via a Series of Three-Dimensional MHD Simulations

  • Junmo An
  • Tetsuya MagaraEmail author
  • Keiji Hayashi
  • Yong-Jae Moon


Interplanetary coronal mass ejections (ICMEs) are important drivers of space-weather disturbances observed at the Earth. We use a parameterized ICME model to investigate the relation between the physical properties of an ICME and these disturbances. Compared to those studies focused on deriving a best set of ICME parameter values matched with observed disturbances, this study is aimed at investigating the role of each parameter in producing space-weather disturbances. Toward this end, we performed a series of three-dimensional magnetohydrodynamic (MHD) simulations with different sets of ICME parameter values. These parameters are the location, speed, mass, magnetic field strength, and magnetic field orientation of a spheromak-shaped ICME, which is injected into the solar wind reconstructed from near-Sun data and interplanetary scintillation (IPS) data via an MHD-IPS tomography method. By comparing simulation results to in situ observations near the Earth we discuss how the physical properties of an ICME affect space-weather disturbances at the Earth.


Coronal mass ejections, interplanetary Magnetic fields, interplanetary Solar wind, disturbances 



The authors wish to thank Kyung Hee University for general support of this work. J.A. thanks Gwangson Choe for his instructive comments. J.A. thanks Soojeong Jang and Jihye Kang for providing the data and information used in this work. J.A. also thanks Takashi Tanaka for providing the REPPU code and useful comments on the code. The CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. The authors used the synoptic charts of solar-surface magnetic fields provided by Wilcox Solar Observatory (WSO), Stanford University ( We also acknowledge use of NASA/GSFC Space Physics Data Facility OMNIWeb service, and OMNI data. Figure 3 was created using VAPOR (Clyne and Rast, 2005; Clyne et al., 2007). J.A. thanks the researchers at NICT for their detailed comments, suggestions, and constant support. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B4002383, PI: T. Magara), as well as the BK21 plus program through the NRF.

Disclosure of Potential Conflicts of Interest

The authors declare that there are no conflicts of interest.


  1. Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys.9, 131. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., Leka, K.D.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs – Space-weather HMI active region patches. Solar Phys.289, 3549. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Brio, M., Wu, C.C.: 1988, An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys.75(2), 400. DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res.86, 6673. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Cho, K.-S., Marubashi, K., Kim, R.-S., Park, S.-H., Lim, E.-K., Kim, S.-J., Kumar, P., Yurchyshyn, V., Moon, Y.-J., Lee, J.-O.: 2017, Impact of the ICME-Earth geometry on the strength of the associated geomagnetic storm: The September 2014 and March 2015 events. J. Korean Astron. Soc.50, 29. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Clyne, J., Rast, M.: 2005, A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow simulations. Proc. SPIE - Int. Soc. for Optical Eng.5669, 284. DOI. ADSCrossRefGoogle Scholar
  7. Clyne, J., Mininni, P., Norton, A., Rast, M.: 2007, Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New J. Phys.9(8), 301. ADSCrossRefGoogle Scholar
  8. DeVore, C.R.: 2000, Magnetic helicity generation by solar differential rotation. Astrophys. J.539, 944. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Echer, E., Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L.C.: 2008, Interplanetary conditions causing intense geomagnetic storms (\(\mbox{Dst} \leq -100~\mbox{nT}\)) during solar cycle 23 (1996 – 2006). J. Geophys. Res.113, A05221. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Filippov, B., Martsenyuk, O., Srivastava, A.K., Uddin, W.: 2015, Solar magnetic flux ropes. J. Astrophys. Astron.36, 157. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Gonzalez, W.D., Tsurutani, B.T.: 1987, Criteria of interplanetary parameters causing intense magnetic storms (\(\mbox{D}_{st} < -100\) nT). Planet. Space Sci.35, 1101. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Gopalswamy, N., Yashiro, S., Michałek, G., Kaiser, M.L., Howard, R.A., Reames, D.V., Leske, R., von Rosenvinge, T.: 2002, Interacting coronal mass ejections and solar energetic particles. Astrophys. J. Lett.572, L103. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets104, 295. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Hayashi, K., Tokumaru, M., Fujiki, K.: 2016, MHD-IPS analysis of relationship among solar wind density, temperature, and flow speed. J. Geophys. Res.121, 7367. DOI. ADS. CrossRefGoogle Scholar
  15. Hayashi, K., Zhao, X.P., Liu, Y.: 2006, MHD simulation of two successive interplanetary disturbances driven by cone-model parameters in IPS-based solar wind. Geophys. Res. Lett.33, L20103. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Hayashi, K., Kojima, M., Tokumaru, M., Fujiki, K.: 2003, MHD tomography using interplanetary scintillation measurement. J. Geophys. Res.108, 1102. DOI. ADS. CrossRefGoogle Scholar
  17. Hidalgo, M.A., Nieves-Chinchilla, T.: 2012, A global magnetic topology model for magnetic clouds. I. Astrophys. J.748(2), 109. DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  18. Hu, Q., Sonnerup, B.U.Ö.: 2002, Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. J. Geophys. Res.107, 1142. DOI. ADS. CrossRefGoogle Scholar
  19. Inoue, S., Kusano, K., Magara, T., Shiota, D., Yamamoto, T.T.: 2011, Twist and connectivity of magnetic field lines in the solar active region NOAA 10930. Astrophys. J.738, 161. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Kang, J., Magara, T., Inoue, S., Kubo, Y., Nishizuka, N.: 2016, Distribution characteristics of coronal electric current density as an indicator for the occurrence of a solar flare. Publ. Astron. Soc. Japan68, 101. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Kataoka, R., Ebisuzaki, T., Kusano, K., Shiota, D., Inoue, S., Yamamoto, T.T., Tokumaru, M.: 2009, Three-dimensional MHD modeling of the solar wind structures associated with 13 December 2006 coronal mass ejection. J. Geophys. Res.114, A10102. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res.87, 613. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Kliem, B., Török, T., Thompson, W.T.: 2012, A parametric study of erupting flux rope rotation. Modeling the “Cartwheel CME” on 9 April 2008. Solar Phys.281, 137. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Lee, H., Magara, T.: 2018, MHD simulation for investigating the dynamic state transition responsible for a solar eruption in active region 12158. Astrophys. J.859, 132. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res.95, 11957. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Lim, E.-K., Jeong, H., Chae, J., Moon, Y.-J.: 2007, A check for consistency between different magnetic helicity measurements based on the helicity conservation principle. Astrophys. J.656(2), 1167. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Linker, J.A., Caplan, R.M., Downs, C., Riley, P., Mikic, Z., Lionello, R., Henney, C.J., Arge, C.N., Liu, Y., Derosa, M.L., Yeates, A., Owens, M.J.: 2017, The open flux problem. Astrophys. J.848, 70. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Liu, Y., Luhmann, J.G., Müller-Mellin, R., Schroeder, P.C., Wang, L., Lin, R.P., Bale, S.D., Li, Y., Acuña, M.H., Sauvaud, J.-A.: 2008, A comprehensive view of the 2006 December 13 CME: From the Sun to interplanetary space. Astrophys. J.689, 563. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Lugaz, N., Manchester, W.B. IV, Gombosi, T.I.: 2005, Numerical simulation of the interaction of two coronal mass ejections from Sun to Earth. Astrophys. J.634, 651. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Lugaz, N., Downs, C., Shibata, K., Roussev, I.I., Asai, A., Gombosi, T.I.: 2011, Numerical investigation of a coronal mass ejection from an anemone active region: Reconnection and deflection of the 2005 August 22 eruption. Astrophys. J.738, 127. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Lynch, B.J., Gruesbeck, J.R., Zurbuchen, T.H., Antiochos, S.K.: 2005, Solar cycle-dependent helicity transport by magnetic clouds. J. Geophys. Res.110, A08107. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Manchester, W.B., Gombosi, T.I., Roussev, I., Ridley, A., de Zeeuw, D.L., Sokolov, I.V., Powell, K.G., Tóth, G.: 2004, Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation. J. Geophys. Res.109, A02107. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Manchester, W.B., Ridley, A.J., Gombosi, T.I., Dezeeuw, D.L.: 2006, Modeling the Sun-to-Earth propagation of a very fast CME. Adv. Space Res.38, 253. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Manchester, I., Ward, B., Vourlidas, A., Tóth, G., Lugaz, N., Roussev, I.I., Sokolov, I.V., Gombosi, T.I., De Zeeuw, D.L., Opher, M.: 2008, Three-dimensional MHD simulation of the 2003 October 28 coronal mass ejection: Comparison with LASCO coronagraph observations. Astrophys. J.684, 1448. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Marubashi, K., Akiyama, S., Yashiro, S., Gopalswamy, N., Cho, K.-S., Park, Y.-D.: 2015, Geometrical relationship between interplanetary flux ropes and their solar sources. Solar Phys.290, 1371. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Moriguchi, T., Nakamizo, A., Tanaka, T., Obara, T., Shimazu, H.: 2008, Current systems in the Jovian magnetosphere. J. Geophys. Res.113, A05204. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Nakamizo, A., Tanaka, T., Kubo, Y., Kamei, S., Shimazu, H., Shinagawa, H.: 2009, Development of the 3-D MHD model of the solar corona-solar wind combining system. J. Geophys. Res.114, A07109. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Odstrcil, D., Riley, P., Zhao, X.P.: 2004, Numerical simulation of the 12 May 1997 interplanetary CME event. J. Geophys. Res.109, A02116. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Parker, E.N.: 1958, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J.128, 664. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys.6, 442. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Schmidt-Voigt, M.: 1989, Time-dependent MHD simulations for cometary plasmas. Astron. Astrophys.210, 433. ADS. ADSzbMATHGoogle Scholar
  42. Shen, F., Feng, X.S., Wang, Y., Wu, S.T., Song, W.B., Guo, J.P., Zhou, Y.F.: 2011, Three-dimensional MHD simulation of two coronal mass ejections’ propagation and interaction using a successive magnetized plasma blobs model. J. Geophys. Res.116, A09103. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Shiota, D., Kataoka, R.: 2016, Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME). Space Weather14, 56. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Snyder, C.W., Neugebauer, M., Rao, U.R.: 1963, The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity. J. Geophys. Res.68, 6361. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Tanaka, T.: 1994, Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields. J. Comput. Phys.111, 381. DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  46. Tanaka, T.: 2015, Substorm auroral dynamics reproduced by advanced global magnetosphere-ionosphere (M-I) coupling simulation. In: Auroral Dynamics and Space Weather, 177. Chap. 13. DOI. CrossRefGoogle Scholar
  47. Tanaka, T., Murawski, K.: 1997, Three-dimensional MHD simulation of the solar wind interaction with the ionosphere of Venus: Results of two-component reacting plasma simulation. J. Geophys. Res.102, 19805. DOI. ADS. ADSCrossRefGoogle Scholar
  48. Tanaka, T., Washimi, H.: 1999, Solar cycle dependence of the heliospheric shape deduced from a global MHD simulation of the interaction process between a nonuniform time-dependent solar wind and the local interstellar medium. J. Geophys. Res.104, 12605. DOI. ADS. ADSCrossRefGoogle Scholar
  49. Thernisien, A.F.R., Howard, R.A., Vourlidas, A.: 2006, Modeling of flux rope coronal mass ejections. Astrophys. J.652, 763. DOI. ADS. ADSCrossRefGoogle Scholar
  50. Thompson, W.T.: 2006, Coordinate systems for solar image data. Astron. Astrophys.449, 791. DOI. ADS. ADSCrossRefGoogle Scholar
  51. Török, T., Downs, C., Linker, J.A., Lionello, R., Titov, V.S., Mikić, Z., Riley, P., Caplan, R.M., Wijaya, J.: 2018, Sun-to-Earth MHD simulation of the 2000 July 14 “Bastille Day” eruption. Astrophys. J.856, 75. DOI. ADS. ADSCrossRefGoogle Scholar
  52. Totten, T.L., Freeman, J.W., Arya, S.: 1995, An empirical determination of the polytropic index for the free-streaming solar wind using HELIOS 1 data. J. Geophys. Res.100, 13. DOI. ADS. ADSCrossRefGoogle Scholar
  53. Vandas, M., Fischer, S., Pelant, P., Dryer, M., Smith, Z., Detman, T.: 1997, Propagation of a spheromak 1. Some comparisons of cylindrical and spherical magnetic clouds. J. Geophys. Res.102, 24183. DOI. ADS. ADSCrossRefGoogle Scholar
  54. Vemareddy, P., Cheng, X., Ravindra, B.: 2016, Sunspot rotation as a driver of major solar eruptions in the NOAA active region 12158. Astrophys. J.829, 24. DOI. ADS. ADSCrossRefGoogle Scholar
  55. Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y.: 2013, How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Solar Phys.284, 179. DOI. ADS. ADSCrossRefGoogle Scholar
  56. Xie, H., Ofman, L., Lawrence, G.: 2004, Cone model for halo CMEs: Application to space weather forecasting. J. Geophys. Res.109, A03109. DOI. ADS. ADSCrossRefGoogle Scholar
  57. Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mbox{Dst} \leq -100\) nT) during 1996 – 2005. J. Geophys. Res.112, A10102. DOI. ADS. ADSCrossRefGoogle Scholar
  58. Zhou, Y.F., Feng, X.S., Wu, S.T., Du, D., Shen, F., Xiang, C.Q.: 2012, Using a 3-D spherical plasmoid to interpret the Sun-to-Earth propagation of the 4 November 1997 coronal mass ejection event. J. Geophys. Res.117, A01102. DOI. ADS. ADSCrossRefGoogle Scholar
  59. Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev.123, 31. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Space ResearchKyung Hee UniversityYonginRepublic of Korea
  2. 2.Department of Astronomy and Space ScienceKyung Hee UniversityYonginRepublic of Korea
  3. 3.NWRABoulderUSA
  4. 4.Institute of Space-Earth Environmental ResearchNagoya UniversityNagoyaJapan
  5. 5.HEPLStanford UniversityStanfordUSA

Personalised recommendations