Solar Physics

, 294:139 | Cite as

Development of a Fast CME and Properties of a Related Interplanetary Transient

  • V. V. GrechnevEmail author
  • A. A. Kochanov
  • A. M. Uralov
  • V. A. Slemzin
  • D. G. Rodkin
  • F. F. Goryaev
  • V. I. Kiselev
  • I. I. Myshyakov


We study the development of a coronal mass ejection (CME) caused by a prominence eruption on 24 February 2011 and properties of a related interplanetary CME (ICME). The prominence destabilized, accelerated, and produced an M3.5 flare, a fast CME, and a shock wave. The eruption at the east limb was observed in quadrature by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) and by the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instrument suite on board the Solar-Terrestrial Relations Observatory (STEREO). The ICME produced by the SOL2011-02-24 event was measured in situ on STEREO-B two days later. The diagnostics made from multi-wavelength SDO/AIA images reveals a pre-eruptive heating of the prominence to about 7 MK and its subsequent heating during the eruption by flare-accelerated particles to about 10 MK. The hot plasma was detected in the related ICME as an enhancement in the ionic charge state of Fe, whose evolution was reproduced in the modeling. The analysis of the solar source region allows for predicting the variations of magnetic components in the ICME, while the flux-rope rotation by about \(40^{\circ }\) was indicated by observations. The magnetic-cloud propagation appears to be ballistic.


Coronal mass ejections Heating, in flares Magnetic fields, interplanetary Prominences, active Solar wind, disturbances X-ray bursts 



We thank D.V. Prosovetsky, Yu.S. Shugay, B.V. Somov, and A.V. Kiselev for their assistance and discussions. We are indebted to the co-authors of the Grechnev et al. (2015) article that provided the basis for the present work. We thank the anonymous reviewer for valuable remarks.

V. Slemzin and D. Rodkin (Sections 2, 3.3, and 4.2) were funded by the Russian Science Foundation (RSF) under grant 17-12-01567. V. Grechnev, A. Kochanov, A. Uralov, V. Kiselev, and I. Myshyakov (Sections 3.1, 3.2, 3.4 – 3.6, 4.1, 4.3, and the Appendix) were funded by the RSF under grant 18-12-00172.

We thank the NASA/SDO and the AIA and HMI science teams; the NASA’s STEREO/SECCHI science and instrument teams; the teams operating RHESSI, SOHO/LASCO, S/WAVES, and the GOES satellites for the data used here. SOHO is a project of international cooperation between ESA and NASA. We are grateful to the team maintaining the CME Catalog at the CDAW Data Center by NASA and the Catholic University of America in cooperation with the Naval Research Laboratory. We thank the team that created and maintains the online archive of the WSA – ENLIL + Cone Model and the team that created the online Drag-Based Model.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11207_2019_1529_MOESM1_ESM.mpg (3.6 mb)
(MPG 3.6 MB)
11207_2019_1529_MOESM2_ESM.mpg (2.3 mb)
(MPG 2.3 MB)
11207_2019_1529_MOESM3_ESM.mpg (1.2 mb)
(MPG 1.2 MB)
11207_2019_1529_MOESM4_ESM.mpg (4.5 mb)
(MPG 4.5 MB)
11207_2019_1529_MOESM5_ESM.mpg (4.5 mb)
(MPG 4.5 MB)


  1. Acuña, M.H., Curtis, D., Scheifele, J.L., Russell, C.T., Schroeder, P., Szabo, A., Luhmann, J.G.: 2008, The STEREO/IMPACT magnetic field experiment. Space Sci. Rev.136, 203. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Amari, T., Luciani, J.F., Mikic, Z., Linker, J.: 2000, A twisted flux rope model for coronal mass ejections and two-ribbon flares. Astrophys. J. Lett.529, L49. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Anzer, U.: 1978, Can coronal loop transients be driven magnetically? Solar Phys.57, 111. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Anzer, U., Heinzel, P.: 2005, On the nature of dark extreme ultraviolet structures seen by SOHO/EIT and TRACE. Astrophys. J.622, 714. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Arnaud, M., Raymond, J.: 1992, Iron ionization and recombination rates and ionization equilibrium. Astrophys. J.398, 394. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Aschwanden, M.J., Gopalswamy, N.: 2019, Global energetics of solar flares. VII. Aerodynamic drag in coronal mass ejections. Astrophys. J.877, 149. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Battaglia, M., Kontar, E.P.: 2012, RHESSI and SDO/AIA observations of the chromospheric and coronal plasma parameters during a solar flare. Astrophys. J.760, 142. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Bougeret, J.L., Goetz, K., Kaiser, M.L., Bale, S.D., Kellogg, P.J., Maksimovic, M., Monge, N., Monson, S.J., Astier, P.L., Davy, S., et al.: 2008, S/WAVES: The radio and plasma wave investigation on the STEREO mission. Space Sci. Rev.136, 487. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., et al.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys.162, 357. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Canfield, R.C., Hudson, H.S., McKenzie, D.E.: 1999, Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett.26, 627. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Cargill, P.J.: 2004, On the aerodynamic drag force acting on interplanetary coronal mass ejections. Solar Phys.221, 135. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Chen, J.: 1989, Effects of toroidal forces in current loops embedded in a background plasma. Astrophys. J.338, 453. DOI. ADS. ADSMathSciNetCrossRefGoogle Scholar
  13. Chen, J.: 1996, Theory of prominence eruption and propagation: Interplanetary consequences. J. Geophys. Res.101, 27499. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Chen, J.: 2017, Physics of erupting solar flux ropes: Coronal mass ejections (CMEs) – Recent advances in theory and observation. Phys. Plasmas24, 090501. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Chen, J., Krall, J.: 2003, Acceleration of coronal mass ejections. J. Geophys. Res.108, 1410. DOI. ADS. CrossRefGoogle Scholar
  16. Chertok, I.M., Grechnev, V.V., Abunin, A.A.: 2017, An early diagnostics of the geoeffectiveness of solar eruptions from photospheric magnetic flux observations: The transition from SOHO to SDO. Solar Phys.292, 62. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Chertok, I.M., Grechnev, V.V., Belov, A.V., Abunin, A.A.: 2013, Magnetic flux of EUV arcade and dimming regions as a relevant parameter for early diagnostics of solar eruptions – Sources of non-recurrent geomagnetic storms and Forbush decreases. Solar Phys.282, 175. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Démoulin, P.: 2010, Interaction of ICMEs with the solar wind. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth International Solar Wind Conference, American Institute of Physics Conference Series1216, 329. DOI. ADS. CrossRefGoogle Scholar
  19. Démoulin, P., Aulanier, G.: 2010, Criteria for flux rope eruption: Non-equilibrium versus torus instability. Astrophys. J.718, 1388. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: An overview. Solar Phys.162, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Filippov, B.: 2013, Electric current equilibrium in the corona. Solar Phys.283, 401. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Filippov, B.P., Gopalswamy, N., Lozhechkin, A.V.: 2001, Non-radial motion of eruptive filaments. Solar Phys.203, 119. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Filippov, B.P., Gopalswamy, N., Lozhechkin, A.V.: 2002, Motion of an eruptive prominence in the solar corona. Astron. Rep.46, 417. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Filippov, B., Koutchmy, S.: 2008, Causal relationships between eruptive prominences and coronal mass ejections. Ann. Geophys.26, 3025. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Foullon, C., Owen, C.J., Dasso, S., Green, L.M., Dandouras, I., Elliott, H.A., Fazakerley, A.N., Bogdanova, Y.V., Crooker, N.U.: 2007, Multi-spacecraft study of the 21 January 2005 ICME. Evidence of current sheet substructure near the periphery of a strongly expanding, fast magnetic cloud. Solar Phys.244, 139. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Galvin, A.B., Kistler, L.M., Popecki, M.A., Farrugia, C.J., Simunac, K.D.C., Ellis, L., Möbius, E., Lee, M.A., Boehm, M., Carroll, J., et al.: 2008, The Plasma and Suprathermal Ion Composition (PLASTIC) investigation on the STEREO observatories. Space Sci. Rev.136, 437. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Gibson, S.E., Low, B.C.: 1998, A time-dependent three-dimensional magnetohydrodynamic model of the coronal mass ejection. Astrophys. J.493, 460. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Glesener, L., Krucker, S., Bain, H.M., Lin, R.P.: 2013, Observation of heating by flare-accelerated electrons in a solar coronal mass ejection. Astrophys. J. Lett.779, L29. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Gopalswamy, N., Yashiro, S., Akiyama, S., Xie, H.: 2017, Estimation of reconnection flux using post-eruption arcades and its relevance to magnetic clouds at 1 AU. Solar Phys.292, 65. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Grechnev, V.V., Chertok, I.M., Slemzin, V.A., Kuzin, S.V., Ignat’ev, A.P., Pertsov, A.A., Zhitnik, I.A., Delaboudinière, J.-P., Auchère, F.: 2005, CORONAS-F/SPIRIT EUV observations of October–November 2003 solar eruptive events in combination with SOHO/EIT data. J. Geophys. Res.110, A09S07. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Grechnev, V.V., Uralov, A.M., Zandanov, V.G., Baranov, N.Y., Shibasaki, K.: 2006, Observations of prominence eruptions with two radioheliographs, SSRT, and NoRH. Publ. Astron. Soc. Japan58, 69. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Grechnev, V.V., Kuz’menko, I.V., Uralov, A.M., Chertok, I.M., Kochanov, A.A.: 2013, Microwave negative bursts as indications of reconnection between eruptive filaments and a large-scale coronal magnetic environment. Publ. Astron. Soc. Japan65, S10. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Grechnev, V.V., Uralov, A.M., Slemzin, V.A., Chertok, I.M., Filippov, B.P., Rudenko, G.V., Temmer, M.: 2014, A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. I. Unusual history of an eruptive filament. Solar Phys.289, 289. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Grechnev, V.V., Uralov, A.M., Kuzmenko, I.V., Kochanov, A.A., Chertok, I.M., Kalashnikov, S.S.: 2015, Responsibility of a filament eruption for the initiation of a flare, CME, and blast wave, and its possible transformation into a bow shock. Solar Phys.290, 129. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Grechnev, V.V., Uralov, A.M., Kochanov, A.A., Kuzmenko, I.V., Prosovetsky, D.V., Egorov, Y.I., Fainshtein, V.G., Kashapova, L.K.: 2016, A tiny eruptive filament as a flux-rope progenitor and driver of a large-scale CME and wave. Solar Phys.291, 1173. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Gruesbeck, J.R., Lepri, S.T., Zurbuchen, T.H., Antiochos, S.K.: 2011, Constraints on coronal mass ejection evolution from in situ observations of ionic charge states. Astrophys. J.730, 103. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., et al.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev.136, 67. DOI. ADS. ADSCrossRefGoogle Scholar
  38. James, A.W., Green, L.M., Palmerio, E., Valori, G., Reid, H.A.S., Baker, D., Brooks, D.H., van Driel-Gesztelyi, L., Kilpua, E.K.J.: 2017, On-disc observations of flux rope formation prior to its eruption. Solar Phys.292, 71. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Jian, L.K., MacNeice, P.J., Taktakishvili, A., Odstrcil, D., Jackson, B., Yu, H.-S., Riley, P., Sokolov, I.V., Evans, R.M.: 2015, Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC. Space Weather13, 316. DOI. ADSCrossRefGoogle Scholar
  40. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev.136, 5. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Kumar, P., Cho, K.-S., Bong, S.-C., Park, S.-H., Kim, Y.H.: 2012, Initiation of coronal mass ejection and associated flare caused by helical kink instability observed by SDO/AIA. Astrophys. J.746, 67. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Landi, E., Raymond, J.C., Miralles, M.P., Hara, H.: 2010, Physical conditions in a coronal mass ejection from Hinode, STEREO, and SOHO observations. Astrophys. J.711, 75. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Lee, J.-Y., Raymond, J.C., Ko, Y.-K., Kim, K.-S.: 2009, Three-dimensional structure and energy balance of a coronal mass ejection. Astrophys. J.692, 1271. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys.275, 17. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Lepri, S.T., Zurbuchen, T.H.: 2004, Iron charge state distributions as an indicator of hot ICMEs: Possible sources and temporal and spatial variations during solar maximum. J. Geophys. Res.109, A01112. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Lepri, S.T., Zurbuchen, T.H., Fisk, L.A., Richardson, I.G., Cane, H.V., Gloeckler, G.: 2001, Iron charge distribution as an identifier of interplanetary coronal mass ejections. J. Geophys. Res.106, 29231. DOI. ADS. ADSCrossRefGoogle Scholar
  47. Lin, C.-H., Gallagher, P.T., Raftery, C.L.: 2010, Investigating the driving mechanisms of coronal mass ejections. Astron. Astrophys.516, A44. DOI. ADS. CrossRefzbMATHGoogle Scholar
  48. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., et al.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys.210, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  49. Liu, Y., Davies, J.A., Luhmann, J.G., Vourlidas, A., Bale, S.D., Lin, R.P.: 2010, Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys. J. Lett.710, L82. DOI. ADS. ADSCrossRefGoogle Scholar
  50. Low, B.C.: 1982, Self-similar magnetohydrodynamics. I – The gamma = 4/3 polytrope and the coronal transient. Astrophys. J.254, 796. DOI. ADS. ADSCrossRefGoogle Scholar
  51. Luhmann, J.G., Curtis, D.W., Schroeder, P., McCauley, J., Lin, R.P., Larson, D.E., Bale, S.D., Sauvaud, J.-A., Aoustin, C., Mewaldt, R.A., et al.: 2008, STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Rev.136, 117. DOI. ADS. ADSCrossRefGoogle Scholar
  52. Lundquist, S.: 1951, On the stability of magneto-hydrostatic fields. Phys. Rev.83, 307. DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. Lynch, B.J., Reinard, A.A., Mulligan, T., Reeves, K.K., Rakowski, C.E., Allred, J.C., Li, Y., Laming, J.M., MacNeice, P.J., Linker, J.A.: 2011, Ionic composition structure of coronal mass ejections in axisymmetric magnetohydrodynamic models. Astrophys. J.740, 112. DOI. ADS. ADSCrossRefGoogle Scholar
  54. Manchester, W.B. IV, Vourlidas, A., Tóth, G., Lugaz, N., Roussev, I.I., Sokolov, I.V., Gombosi, T.I., De Zeeuw, D.L., Opher, M.: 2008, Three-dimensional MHD simulation of the 2003 October 28 coronal mass ejection: Comparison with LASCO coronagraph observations. Astrophys. J.684, 1448. DOI. ADS. ADSCrossRefGoogle Scholar
  55. Manchester, W., Kilpua, E.K.J., Liu, Y.D., Lugaz, N., Riley, P., Török, T., Vršnak, B.: 2017, The physical processes of CME/ICME evolution. Space Sci. Rev.212, 1159. DOI. ADS. ADSCrossRefGoogle Scholar
  56. Martínez Oliveros, J.-C., Hudson, H.S., Hurford, G.J., Krucker, S., Lin, R.P., Lindsey, C., Couvidat, S., Schou, J., Thompson, W.T.: 2012, The height of a white-light flare and its hard X-ray sources. Astrophys. J. Lett.753, L26. DOI. ADS. ADSCrossRefGoogle Scholar
  57. Marubashi, K., Lepping, R.P.: 2007, Long-duration magnetic clouds: A comparison of analyses using torus- and cylinder-shaped flux rope models. Ann. Geophys.25, 2453. DOI. ADS. ADSCrossRefGoogle Scholar
  58. Marubashi, K., Cho, K.-S., Kim, Y.-H., Park, Y.-D., Park, S.-H.: 2012, Geometry of the 20 November 2003 magnetic cloud. J. Geophys. Res.117, A01101. DOI. ADS. ADSCrossRefGoogle Scholar
  59. Marubashi, K., Akiyama, S., Yashiro, S., Gopalswamy, N., Cho, K.-S., Park, Y.-D.: 2015, Geometrical relationship between interplanetary flux ropes and their solar sources. Solar Phys.290, 1371. DOI. ADS. ADSCrossRefGoogle Scholar
  60. Masson, S., Antiochos, S.K., DeVore, C.R.: 2013, A model for the escape of solar-flare-accelerated particles. Astrophys. J.771, 82. DOI. ADS. ADSCrossRefGoogle Scholar
  61. Mays, M.L., Taktakishvili, A., Pulkkinen, A., MacNeice, P.J., Rastätter, L., Odstrcil, D., Jian, L.K., Richardson, I.G., LaSota, J.A., Zheng, Y., Kuznetsova, M.M.: 2015, Ensemble modeling of CMEs using the WSA-ENLIL+Cone model. Solar Phys.290, 1775. DOI. ADS. ADSCrossRefGoogle Scholar
  62. Metcalf, T.R., Alexander, D.: 1999, Coronal trapping of energetic flare particles: Yohkoh/HXT observations. Astrophys. J.522, 1108. DOI. ADS. ADSCrossRefGoogle Scholar
  63. Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J.552, 833. DOI. ADS. ADSCrossRefGoogle Scholar
  64. Möstl, U.V., Temmer, M., Veronig, A.M.: 2013, The Kelvin–Helmholtz instability at coronal mass ejection boundaries in the solar corona: Observations and 2.5D MHD simulations. Astrophys. J. Lett.766, L12. DOI. ADS. ADSCrossRefGoogle Scholar
  65. Murphy, N.A., Raymond, J.C., Korreck, K.E.: 2011, Plasma heating during a coronal mass ejection observed by the Solar and Heliospheric Observatory. Astrophys. J.735, 17. DOI. ADS. ADSCrossRefGoogle Scholar
  66. Odstrcil, D.: 2003, Modeling 3-D solar wind structure. Adv. Space Res.32, 497. DOI. ADS. ADSCrossRefGoogle Scholar
  67. Owens, M.J., Démoulin, P., Savani, N.P., Lavraud, B., Ruffenach, A.: 2012, Implications of non-cylindrical flux ropes for magnetic cloud reconstruction techniques and the interpretation of double flux rope events. Solar Phys.278, 435. DOI. ADS. ADSCrossRefGoogle Scholar
  68. Pal, S., Nandy, D., Srivastava, N., Gopalswamy, N., Panda, S.: 2018, Dependence of coronal mass ejection properties on their solar source active region characteristics and associated flare reconnection flux. Astrophys. J.865, 4. DOI. ADS. ADSCrossRefGoogle Scholar
  69. Plowman, J., Kankelborg, C., Martens, P.: 2013, Fast differential emission measure inversion of solar coronal data. Astrophys. J.771, 2. DOI. ADS. ADSCrossRefGoogle Scholar
  70. Qiu, J., Yurchyshyn, V.B.: 2005, Magnetic reconnection flux and coronal mass ejection velocity. Astrophys. J. Lett.634, L121. DOI. ADS. ADSCrossRefGoogle Scholar
  71. Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J.659, 758. DOI. ADS. ADSCrossRefGoogle Scholar
  72. Richardson, I.G., Cane, H.V.: 2004, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res.109, A09104. DOI. ADS. ADSCrossRefGoogle Scholar
  73. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys.264, 189. DOI. ADS. ADSCrossRefGoogle Scholar
  74. Rodkin, D., Goryaev, F., Pagano, P., Gibb, G., Slemzin, V., Shugay, Y., Veselovsky, I., Mackay, D.H.: 2017, Origin and ion charge state evolution of solar wind transients during 4 – 7 August 2011. Solar Phys.292, 90. DOI. ADS. ADSCrossRefGoogle Scholar
  75. Rodkin, D., Slemzin, V., Zhukov, A.N., Goryaev, F., Shugay, Y., Veselovsky, I.: 2018, Single ICMEs and complex transient structures in the solar wind in 2010 – 2011. Solar Phys.293, 78. DOI. ADS. ADSCrossRefGoogle Scholar
  76. Rollett, T., Möstl, C., Temmer, M., Frahm, R.A., Davies, J.A., Veronig, A.M., Vršnak, B., Amerstorfer, U.V., Farrugia, C.J., Žic, T., Zhang, T.L.: 2014, Combined multipoint remote and in situ observations of the asymmetric evolution of a fast solar coronal mass ejection. Astrophys. J. Lett.790, L6. DOI. ADS. ADSCrossRefGoogle Scholar
  77. Sauvaud, J.-A., Larson, D., Aoustin, C., Curtis, D., Médale, J.-L., Fedorov, A., Rouzaud, J., Luhmann, J., Moreau, T., Schröder, P., Louarn, P., Dandouras, I., Penou, E.: 2008, The IMPACT Solar Wind Electron Analyzer (SWEA). Space Sci. Rev.136, 227. DOI. ADS. ADSCrossRefGoogle Scholar
  78. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., et al.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys.275, 207. DOI. ADS. ADSCrossRefGoogle Scholar
  79. Share, G.H., Murphy, R.J., White, S.M., Tolbert, A.K., Dennis, B.R., Schwartz, R.A., Smart, D.F., Shea, M.A.: 2018, Characteristics of late-phase \({>}\,100~\mbox{MeV}\) gamma-ray emission in solar eruptive events. Astrophys. J.869, 182. DOI. ADS. ADSCrossRefGoogle Scholar
  80. Shen, F., Wu, S.T., Feng, X., Wu, C.-C.: 2012, Acceleration and deceleration of coronal mass ejections during propagation and interaction. J. Geophys. Res.117, A11101. DOI. ADS. ADSCrossRefGoogle Scholar
  81. Shen, J., Zhou, T., Ji, H., Wiegelmann, T., Inhester, B., Feng, L.: 2014, Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare. Astrophys. J.791, 83. DOI. ADS. ADSCrossRefGoogle Scholar
  82. Slemzin, V., Chertok, I., Grechnev, V., Ignat’ev, A., Kuzin, S., Pertsov, A., Zhitnik, I., Delaboudinière, J.-P.: 2004, Multi-wavelength observations of CME-associated structures on the Sun with the CORONAS-F/SPIRIT EUV telescope. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity, IAU Symp.223, 533. DOI. ADS. CrossRefGoogle Scholar
  83. Švestka, Z.: 2001, Varieties of coronal mass ejections and their relation to flares. Space Sci. Rev.95, 135. ADS. ADSCrossRefGoogle Scholar
  84. Uralov, A.M.: 1990, The flare as a result of cross-interaction of loops – Causal relationship with a prominence. Solar Phys.127, 253. DOI. ADS. ADSCrossRefGoogle Scholar
  85. Uralov, A.M., Lesovoi, S.V., Zandanov, V.G., Grechnev, V.V.: 2002, Dual-filament initiation of a coronal mass ejection: Observations and model. Solar Phys.208, 69. DOI. ADS. ADSCrossRefGoogle Scholar
  86. Uralov, A.M., Grechnev, V.V., Rudenko, G.V., Myshyakov, I.I., Chertok, I.M., Filippov, B.P., Slemzin, V.A.: 2014, A challenging solar eruptive event of 18 November 2003 and the causes of the 20 November geomagnetic superstorm. III. Catastrophe of the eruptive filament at a magnetic null point and formation of an opposite-handedness CME. Solar Phys.289, 3747. DOI. ADS. ADSCrossRefGoogle Scholar
  87. Vandas, M., Romashets, E.P.: 2003, A force-free field with constant alpha in an oblate cylinder: A generalization of the Lundquist solution. Astron. Astrophys.398, 801. DOI. ADS. ADSCrossRefGoogle Scholar
  88. Vandas, M., Romashets, E., Geranios, A.: 2015, Modeling of magnetic cloud expansion. Astron. Astrophys.583, A78. DOI. ADS. ADSCrossRefGoogle Scholar
  89. Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2013, Propagation of interplanetary coronal mass ejections: The drag-based model. Solar Phys.285, 295. DOI. ADS. ADSCrossRefGoogle Scholar
  90. Vršnak, B., Temmer, M., Žic, T., Taktakishvili, A., Dumbović, M., Möstl, C., Veronig, A.M., Mays, M.L., Odstrčil, D.: 2014, Heliospheric propagation of coronal mass ejections: Comparison of numerical WSA-ENLIL+Cone model and analytical drag-based model. Astrophys. J. Suppl.213, 21. DOI. ADS. ADSCrossRefGoogle Scholar
  91. Wood, B.E., Howard, R.A., Linton, M.G.: 2016, Imaging prominence eruptions out to 1 AU. Astrophys. J.816, 67. DOI. ADS. ADSCrossRefGoogle Scholar
  92. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res.109, A07105. DOI. ADS. ADSCrossRefGoogle Scholar
  93. Yurchyshyn, V., Hu, Q., Abramenko, V.: 2005, Structure of magnetic fields in NOAA active regions 0486 and 0501 and in the associated interplanetary ejecta. Space Weather3, S08C02. DOI. ADS. CrossRefGoogle Scholar
  94. Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., White, S.M.: 2001, On the temporal relationship between coronal mass ejections and flares. Astrophys. J.559, 452. DOI. ADS. ADSCrossRefGoogle Scholar
  95. Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev.123, 31. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Solar-Terrestrial Physics SB RASIrkutskRussia
  2. 2.P. N. Lebedev Physical Institute RASMoscowRussia

Personalised recommendations