Solar Physics

, 294:124 | Cite as

Time-Dependent Two-Fluid Magnetohydrodynamic Model and Simulation of the Chromosphere

  • Qusai Al ShidiEmail author
  • Ofer Cohen
  • Paul Song
  • Jiannan Tu


The Sun’s chromosphere is a highly dynamic, partially ionized region where spicules (hot jets of plasma) form. Here we present a two-fluid MHD model to study the chromosphere, which includes ion–neutral interaction and frictional heating. Our simulation recovers a magnetic-canopy shape that forms quickly, but it is also quickly disrupted by the formation of a jet. Our simulation produces a shock self-consistently, where the jet is driven by the frictional heating, which is much greater than the ohmic heating. Thus, our simulation demonstrates that the jet could be driven purely by thermal effects due to ion–neutral collisions and not by magnetic reconnection. We plan to improve the model to include photo-chemical effects and radiation.


Chromosphere, Models Jets 



We thank an unknown referee for useful comments and suggestions. O. Cohen was supported by NASA Living with a Star grant number NNX16AC11G. J. Tu and P. Song were supported by NSF grants AGS-1702134 and AGS-1559717.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Alissandrakis, C.E., Vial, J.-C., Koukras, A., Buchlin, E., Chane-Yook, M.: 2018, IRIS observations of spicules and structures near the solar limb. Solar Phys. 293, 20. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Arber, T.D., Haynes, M., Leake, J.E.: 2007, Emergence of a flux tube through a partially ionized solar atmosphere. Astrophys. J. 666, 541. DOI. ADSCrossRefGoogle Scholar
  3. Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: 1999, Coronal loop oscillations observed with the transition region and coronal explorer. Astrophys. J. 520, 880. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Avrett, E.H., Loeser, R.: 2008, Models of the solar chromosphere and transition region from sumer and hrts observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen. Astrophys. J. Suppl. 175, 229. ADSCrossRefGoogle Scholar
  5. Brady, C.S., Arber, T.D.: 2016, Simulations of Alfven and kink wave driving of the solar chromosphere: efficient heating and spicule launching. Astrophys. J. 829, 80. ADSCrossRefGoogle Scholar
  6. De Pontieu, B., Marten, P.C.H., Hudson, H.S.: 2001, Chromospheric damping of Alfvén waves. Astrophys. J. 558, 859. ADS. ADSCrossRefGoogle Scholar
  7. De Pontieu, B., Erdelyi, R., De Moortel, I., Metcalf, T.: 2004, Photospheric oscillations in the solar atmosphere: driving chromospheric spicules and coronal waves. In: AGU Fall Meeting Abstracts, SH13A. ADS. Google Scholar
  8. De Pontieu, B., McIntosh, S., Hansteen, V.H., Carlsson, M., Schrijver, C.J., Tarbell, T.D., Title, A.M., Shine, R.A., Suematsu, Y., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Shimizu, T., Nagata, S.: 2007, A tale of two spicules: the impact of spicules on the magnetic chromosphere. Publ. Astron. Soc. Japan 59, S655. DOI. ADS. CrossRefGoogle Scholar
  9. Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: 2002, Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645. DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. Fox, N.J., Velli, M.C., Bale, S.D., Decker, R., Driesman, A., Howard, R.A., Kasper, J.C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M.K., McComas, D.J., Raouafi, N.E., Szabo, A.: 2016, The solar probe plus mission: humanity’s first visit to our star. Space Sci. Rev. 204, 7. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Gabriel, A.H.: 1976, A magnetic model of the solar transition region. Phil. Roy. Soc. London A 281, 339. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Gudiksen, B.V., Carlsson, M., Hansteen, V.H., Hayek, W., Leenaarts, J., Martínez-Sykora, J.: 2011, The stellar atmosphere simulation code Bifrost. Code description and validation. Astron. Astrophys. 531, A154. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Hasan, S.S.: 2008, Chromospheric dynamics. Adv. Space Res. 42, 86. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Hillier, A., Takasao, S., Nakamura, N.: 2016, The formation and evolution of reconnection-driven, slow-mode shocks in a partially ionised plasma. Astron. Astrophys. 591, A112. DOI. ADSCrossRefGoogle Scholar
  15. Jess, D.B., Mathioudakis, M., Erdélyi, R., Crockett, P.J., Keenan, F.P., Christian, D.J.: 2009, Alfvén waves in the lower solar atmosphere. Science 323, 1582. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Khomenko, E.: 2017, On the effects of ion-neutral interactions in solar plasmas. Plasma Phys. Control. Fusion 59, 014038. ADSCrossRefGoogle Scholar
  17. Kurganov, A., Tadmor, E.: 2000, New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys. 160, 241. DOI. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. Kuźma, B., Murawski, K., Kayshap, P., Wójcik, D., Srivastava, A.K., Dwivedi, B.N.: 2017a, Two-fluid numerical simulations of solar spicules. Astrophys. J. 849, 78. ADSCrossRefGoogle Scholar
  19. Kuźma, B., Murawski, K., Zaqarashvili, T.V., Konkol, P., Mignone, A.: 2017b, Numerical simulations of solar spicules: adiabatic and non-adiabatic studies. Astrophys. J. 597, A133. DOI. ADS. CrossRefGoogle Scholar
  20. Leake, J.E., Arber, T.D.: 2006, The emergence of magnetic flux through a partially ionised solar atmosphere. Astron. Astrophys. 450, 805. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Leake, J.E., Lukin, V.S., Linton, M.G.: 2013, Magnetic reconnection in a weakly ionized plasma. Phys. Plasmas 20, 061202. DOI. ADSCrossRefGoogle Scholar
  22. Leake, J.E., Lukin, V.S., Linton, M.G., Meier, E.T.: 2012, Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma. Astrophys. J. 760, 109. ADSCrossRefGoogle Scholar
  23. Leake, J.E., DeVore, C.R., Thayer, J.P., Burns, A.G., Crowley, G., Gilbert, H.R., Huba, J.D., Krall, J., Linton, M.G., Lukin, V.S., Wang, W.: 2014, Ionized plasma and neutral gas coupling in the sun’s chromosphere and Earth’s ionosphere/thermosphere. Space Sci. Rev. 184, 107. DOI. ADSCrossRefGoogle Scholar
  24. Maneva, Y.G., Laguna, A.A., Lani, A., Poedts, S.: 2017, Multi-fluid modeling of magnetosonic wave propagation in the solar chromosphere: effects of impact ionization and radiative recombination. Astrophys. J. 836, 197. ADSCrossRefGoogle Scholar
  25. Martinez-Sykora, J., De Pontieu, B., Hansteen, V.: 2012, Two-dimensional radiative magnetohydrodynamic simulations of the importance of partial ionization in the chromosphere. Astrophys. J. 753, 161. ADSCrossRefGoogle Scholar
  26. Martinez-Sykora, J., De Pontieu, B., Carlsson, M., Hansteen, V.H., Nóbrega-Siverio, D., Gudiksen, B.V.: 2017, Two-dimensional radiative magnetohydrodynamic simulations of partial ionization in the chromosphere. II. Dynamics and energetics of the low solar atmosphere. Astrophys. J. 847, 36. ADSCrossRefGoogle Scholar
  27. Mathioudakis, M., Jess, D.B., Erdélyi, R.: 2013, Alfvén waves in the solar atmosphere. From theory to observations. Space Sci. Rev. 175, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  28. McIntosh, S.W., De Pontieu, B., Carlsson, M., Hansteen, V., Boerner, P., Goossens, M.: 2011, Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature 475, 477. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Mignone, A., Tzeferacos, P., Bodo, G.: 2010, High-order conservative finite difference GLM-MHD schemes for cell-centered MHD. J. Comput. Phys. 229, 5896. DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. Nakariakov, V.M., Ofman, L., Deluca, E.E., Roberts, B., Davila, J.M.: 1999, TRACE observation of damped coronal loop oscillations: implications for coronal heating. Science 285, 862. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Ni, L., Lin, J., Roussev, I.I., Schmieder, B.: 2016, Heating mechanisms in the low solar atmosphere through magnetic reconnection in current sheets. Astrophys. J. 832, 195. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Nishizuka, N., Nakamura, T., Kawate, T., Singh, K.A.P., Shibata, K.: 2011, Statistical study of chromospheric anemone jets observed with hinode/sot. Astrophys. J. 731, 43. ADSCrossRefGoogle Scholar
  33. Ofman, L., Wang, T.J.: 2008, Hinode observations of transverse waves with flows in coronal loops. Astron. Astrophys. 482, L9. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Roe, P.L.: 1986, Characteristic-based schemes for the Euler equations. Annu. Rev. Fluid Mech. 18, 337. DOI. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. Rupp, K., Tillet, P., Rudolf, F.: 2016, Viennacl – linear algebra library for multi- and many-core architectures. MathSciNetCrossRefGoogle Scholar
  36. Rutten, R.J.: 2007, Observing the solar chromosphere. In: Heinzel, P., Dorotovič, I., Rutten, R.J. (eds.) The Physics of Chromospheric Plasmas, CS-368, Astron. Soc. Pacific, San Francisco, 27. ADS. Google Scholar
  37. Sanderson, C., Curtin, R.: 2016, Armadillo: a template-based C++ library for linear algebra.
  38. Shimojo, M., Shibata, K.: 2000, Physical parameters of solar x-ray jets. Astrophys. J. 542, 1100. ADSCrossRefGoogle Scholar
  39. Sod, G.A.: 1978, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1. DOI. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. Soler, R., Carbonell, M., Ballester, J.L., Terradas, J.: 2013, Alfvén waves in a partially ionized two-fluid plasma. Astrophys. J. 767, 171. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Song, P.: 2017, A model of the solar chromosphere: structure and internal circulation. Astrophys. J. 846, 2. DOI. ADSCrossRefGoogle Scholar
  42. Song, P., Vasyliūnas, V.M.: 2011, Heating of the solar atmosphere by strong damping of Alfvén waves. J. Geophys. Res. 116, A09104. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Song, P., Vasyliūnas, V.M.: 2014, Effect of horizontally inhomogeneous heating on flow and magnetic field in the chromosphere of the sun. Astrophys. J. Lett. 796, L23. ADSCrossRefGoogle Scholar
  44. Tu, J., Song, P.: 2013, A study of Alfvén wave propagation and heating the chromosphere. Astrophys. J. 777, 53. ADSCrossRefGoogle Scholar
  45. Tu, J., Song, P.: 2016, A two-dimensional global simulation study of inductive-dynamic magnetosphere-ionosphere coupling. J. Geophys. Res. 121, 11. DOI. ADS. CrossRefGoogle Scholar
  46. Vasyliūnas, V.M., Song, P.: 2005, Meaning of ionospheric Joule heating. J. Geophys. Res. 110, A02301. DOI. ADS. ADSCrossRefGoogle Scholar
  47. Wójcik, D., Murawski, K., Musielak, Z.E.: 2018, Acoustic waves in two-fluid solar atmosphere model: cut-off periods, chromospheric cavity, and wave tunnelling. Mon. Not. Roy. Astron. Soc. 481, 262. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Climate and Space Science and EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Lowell Center for Space Science and TechnologyUniversity of Massachusetts LowellLowellUSA

Personalised recommendations