Solar Physics

, 294:112 | Cite as

Automated Detection of Solar Radio Bursts Using a Statistical Method

  • Dayal Singh
  • K. Sasikumar RajaEmail author
  • Prasad Subramanian
  • R. Ramesh
  • Christian Monstein


Radio bursts from the solar corona can provide clues to forecast space-weather hazards. After recent technology advancements, regular monitoring of radio bursts has increased and large observational datasets are produced. Hence, manual identification and classification of them is a challenging task. In this article, we describe an algorithm to automatically identify radio bursts from dynamic solar radio spectrograms using a novel statistical method. We use e-CALLISTO (Compound Astronomical Low Cost Low Frequency Instrument for Spectroscopy and Transportable Observatory) radio spectrometer data obtained at Gauribidanur Observatory near Bangalore in India during 2013 – 2014. We have studied the classifier performance using the receiver operating characteristics. Further, we analyze type III bursts observed in the year 2014 and find that \(75\%\) of the observed bursts were below 200 MHz. Our analysis shows that the positions of flare sites, which are associated with the type III bursts with upper frequency cutoff \(\gtrsim200\) MHz originate close to the solar disk center.


Corona, radio emission Radio bursts Instrumentation and data management 



D.S. acknowledges the INSPIRE-SHE program of the Department of Science and Technology, India. K.S.R. acknowledges the financial support from the Science and Engineering Research Board (SERB), Department of Science and Technology, India (PDF/2015/000393). K.S.R. acknowledges the NVIDIA Corporation for supporting this project by donating the Titan Xp GPU. The authors would like to thank the anonymous referee for his/her comments that helped in improving the manuscript.

Disclosure of Potential Conflicts of Interest

The author declares that there are no conflicts of interest.


  1. Benz, A.O., Monstein, C., Meyer, H., Manoharan, P.K., Ramesh, R., Altyntsev, A., Lara, A., Paez, J., Cho, K.-S.: 2009, A world-wide net of solar radio spectrometers: e-CALLISTO. Earth Moon Planets 104, 277. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: The radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev. 71, 231. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Caroubalos, C., Maroulis, D., Patavalis, N., Bougeret, J.-L., Dumas, G., Perche, C., Alissandrakis, C., Hillaris, A., Moussas, X., Preka-Papadema, P., Kontogeorgos, A., Tsitsipis, P., Kanelakis, G.: 2001, The new multichannel radiospectrograph ARTEMIS-IV/HECATE, of the University of Athens. Exp. Astron. 11, 23. ADS. ADSCrossRefGoogle Scholar
  4. Ebenezer, E., Subramanian, K.R., Ramesh, R., Sundararajan, M.S., Kathiravan, C.: 2007, Gauribidanur radio array solar spectrograph (GRASS). Bull. Astron. Soc. India 35, 111. ADS. ADSGoogle Scholar
  5. Fawcett, T.: 2006, An introduction to roc analysis. Pattern Recognit. Lett. 27(8), 861. DOI. MathSciNetCrossRefGoogle Scholar
  6. Gorgutsa, R.V., Gnezdilov, A.A., Markeev, A.K., Sobolev, D.E.: 2001, An upgrade of the Izmiran’s solar digital radio spectrograph: First results. Astron. Astrophys. Trans. 20, 547. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Guidice, D.A., Cliver, E.W., Barron, W.R., Kahler, S.: 1981, The air force RSTN system. Bull. Am. Astron. Soc. 13, 553. ADS. ADSGoogle Scholar
  8. Hariharan, K., Ramesh, R., Kathiravan, C., Abhilash, H.N., Rajalingam, M.: 2016, High dynamic range observations of solar coronal transients at low radio frequencies with a spectro-correlator. Astrophys. J. Suppl. Ser. 222, 21. DOI. ADS. ADSCrossRefGoogle Scholar
  9. James, T., Subramanian, P.: 2018, Energetics of small electron acceleration episodes in the solar corona from radio noise storm observations. Mon. Not. Roy. Astron. Soc. 479, 1603. DOI. ADS. ADSCrossRefGoogle Scholar
  10. James, T., Subramanian, P., Kontar, E.P.: 2017, Small electron acceleration episodes in the solar corona. Mon. Not. Roy. Astron. Soc. 471, 89. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Kaiser, M.L.: 2005, The STEREO mission: An overview. Adv. Space Res. 36, 1483. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Kishore, P., Kathiravan, C., Ramesh, R., Rajalingam, M., Barve, I.V.: 2014, Gauribidanur low-frequency solar spectrograph. Solar Phys. 289, 3995. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Kishore, P., Ramesh, R., Kathiravan, C., Rajalingam, M.: 2015, A low-frequency radio spectropolarimeter for observations of the solar corona. Solar Phys. 290, 2409. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Kondo, T., Isobe, T., Igi, S., Watari, S.-i., Tokumaru, M.: 1994, The new solar radio observation system at Hiraiso. Commun. Res. Lab. Rev. 40, 85. ADS. Google Scholar
  15. Kumari, A., Ramesh, R., Kathiravan, C., Wang, T.J.: 2017, Strength of the solar coronal magnetic field – a comparison of independent estimates using contemporaneous radio and white-light observations. Solar Phys. 292(11), 161. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Kundu, M.R.: 1965, Solar Radio Astronomy. ADS. Google Scholar
  17. Lobzin, V.V., Cairns, I.H., Zaslavsky, A.: 2014, Automatic recognition of type III solar radio bursts in STEREO/WAVES data for onboard real-time and archived data processing. J. Geophys. Res. 119, 742. DOI. ADS. CrossRefGoogle Scholar
  18. Lobzin, V.V., Cairns, I.H., Robinson, P.A., Steward, G., Patterson, G.: 2009, Automatic recognition of type III solar radio bursts: Automated radio burst identification system method and first observations. Space Weather 7, S04002. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Lobzin, V.V., Cairns, I.H., Robinson, P.A., Steward, G., Patterson, G.: 2010, Automatic recognition of coronal type II radio bursts: The automated radio burst identification system method and first observations. Astrophys. J. Lett. 710, L58. DOI. ADS. ADSCrossRefGoogle Scholar
  20. McLean, D.J., Labrum, N.R.: 1985, Solar Radiophysics: Studies of Emission From the Sun at Metre Wavelengths. ADS. Google Scholar
  21. Monstein, C., Ramesh, R., Kathiravan, C.: 2007, Radio spectrum measurements at the Gauribidanur observatory. Bull. Astron. Soc. India 35, 473. ADSGoogle Scholar
  22. Mugundhan, V., Hariharan, K., Ramesh, R.: 2017, Solar type IIIb radio bursts as tracers for electron density fluctuations in the corona. Solar Phys. 292, 155. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Mugundhan, V., Ramesh, R., Kathiravan, C., Gireesh, G.V.S., Hegde, A.: 2018, Spectropolarimetric observations of solar noise storms at low frequencies. Solar Phys. 293(3), 41. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Ramesh, R.: 2011, Low frequency solar radio astronomy at the Indian Institute of Astrophysics (IIA). In: Astronomical Society of India Conference Series, 2. ADS. Google Scholar
  25. Ramesh, R., Kathiravan, C., Barve, I.V., Beeharry, G.K., Rajasekara, G.N.: 2010, Radio observations of weak energy releases in the solar corona. Astrophys. J. Lett. 719, L41. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Ramesh, R., Sasikumar Raja, K., Kathiravan, C., Narayanan, A.S.: 2013, Low-frequency radio observations of picoflare category energy releases in the solar atmosphere. Astrophys. J. 762, 89. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Rucker, H.O., Macher, W., Fischer, G., Oswald, T., Bougeret, J.L., Kaiser, M.L., Goetz, K.: 2005, Analysis of spacecraft antenna systems: Implications for STEREO/WAVES. Adv. Space Res. 36, 1530. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Saint-Hilaire, P., Vilmer, N., Kerdraon, A.: 2013, A decade of solar type III radio bursts observed by the Nançay radioheliograph 1998 – 2008. Astrophys. J. 762, 60. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Salmane, H., Weber, R., Abed-Meraim, K., Klein, K.-L., Bonnin, X.: 2018, A method for the automated detection of solar radio bursts in dynamic spectra. J. Space Weather Space Clim. 8(27), A43. DOI. ADS. CrossRefGoogle Scholar
  30. Sasikumar Raja, K., Kathiravan, C., Ramesh, R., Rajalingam, M., Barve, I.V.: 2013a, Design and performance of a low-frequency cross-polarized log-periodic dipole antenna. Astrophys. J. Suppl. Ser. 207, 2. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Sasikumar Raja, K., Ramesh, R.: 2013b, Low-frequency observations of transient quasi-periodic radio emission from the solar atmosphere. Astrophys. J. 775, 38. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Sasikumar Raja, K., Subramanian, P., Ananthakrishnan, S., Monstein, C.: 2018, CALLISTO spectrometer at IISER-Pune. ArXiv e-prints. ADS.
  33. Sharma, R., Oberoi, D., Arjunwadkar, M.: 2018, Quantifying weak nonthermal solar radio emission at low radio frequencies. Astrophys. J. 852, 69. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Tarnstrom, G.L., Philip, K.W.: 1972, Solar radio spike bursts. Astron. Astrophys. 16, 21. ADS. ADSGoogle Scholar
  35. Wild, J.P.: 1967, The radioheliograph and the radio astronomy programme of the Culgoora Observatory. Proc. Astron. Soc. Aust. 1, 38. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Zhang, P.J., Wang, C.B., Ye, L.: 2018, A type III radio burst automatic analysis system and statistic results for a half solar cycle with Nançay Decameter Array data. Astron. Astrophys. 618, A165. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Indian Institute of Science Education and ResearchPashanIndia
  2. 2.Physical Research LaboratoryNavrangpuraIndia
  3. 3.Indian Institute of AstrophysicsKoramangalaIndia
  4. 4.Istituto Ricerche Solari Locarno (IRSOL)Locarno MontiSwitzerland

Personalised recommendations