Advertisement

Solar Physics

, 294:103 | Cite as

Self-consistent Modeling of Gamma-ray Spectra from Solar Flares with the Monte Carlo Simulation Package FLUKA

  • Daneele S. Tusnski
  • Sergio SzpigelEmail author
  • Carlos Guillermo Giménez de Castro
  • Alexander L. MacKinnon
  • Paulo José A. Simões
Article

Abstract

We use the Monte Carlo particle physics code FLUKA (Fluktuierende Kaskade) to calculate \(\gamma \)-ray spectra expected from solar flare energetic ion distributions. The FLUKA code includes robust physics-based models for electromagnetic, hadronic and nuclear interactions, sufficiently detailed for it to be a useful tool for calculating nuclear de-excitation, positron-annihilation and neutron-capture line fluxes and shapes, as well as \({\approx}\,\text{GeV}\) continuum radiation from pion decay products. We show nuclear de-excitation \(\gamma \)-ray line model spectra from a range of assumed primary accelerated ion distributions and find them to be in good agreement with those found using the code of Murphy et al. (2009). We also show full \(\gamma \)-ray model spectra which exhibit all the typical structures of \(\gamma \)-ray spectra observed in solar flares. From these model spectra we build templates which are incorporated into the software package Objective Spectral Executive (OSPEX) and used to fit the combined Fermi Gamma-ray Burst Monitor (GBM)/Large Area Telescope (LAT) spectrum of the 2010 June 12 solar flare, providing a statistically acceptable result. To the best of our knowledge, the fit carried out with the FLUKA templates for the full \(\gamma \)-ray spectrum can be regarded as the first attempt to use a single code to implement a self-consistent treatment of the several spectral components in the photon energy range from \({\approx}\,100\mbox{s}~\text{keV}\) to \({\approx}\,100\mbox{s}~\text{MeV}\).

Keywords

FLUKA Flares, models Gamma-ray spectra 

Notes

Acknowledgements

The referees’ many comments and questions helped greatly in improving the paper. We thank the Royal Society Newton Fund for supporting our UK-Brazil collaboration through project NI140209 The THz wavelength range as a window on extremes of solar flare particle acceleration. We also thank the financial support from FAPESP under grants 2009/18386-7 and 2017/13282-5. PJAS acknowledges support from the University of Glasgow’s Lord Kelvin Adam Smith Leadership Fellowship. ALM and PJAS acknowledge relevant and helpful discussions with members of the ISSI International Team on Energetic Ions: The Elusive Component of Solar Flares and with participants in the Lorentz Center Workshop on Solar Sources of GeV Gamma-rays, 26 Feb – 2 Mar 2018. DST acknowledges support from CAPES and Instituto Presbiteriano Mackenzie. CGGC research is partially supported from CNPq (Grant 305203/2016-9). We thank the FLUKA team who provide and support the code. Finally, we thank R.J. Murphy for kindly supplying the copy of the RMK code for calculating nuclear de-excitation \(\gamma \)-ray line spectra we used in this work.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Ackermann, M., Ajello, M., Allafort, A., Atwood, W.B., Baldini, L., Barbiellini, G., Bastieri, D., Bechtol, K., Bellazzini, R., Bhat, P.N., Blandford, R.D., Bonamente, E., Borgland, A.W., Bregeon, J., Briggs, M.S., Brigida, M., Bruel, P., Buehler, R., Burgess, J.M., Buson, S., Caliandro, G.A., Cameron, R.A., Casandjian, J.M., Cecchi, C., Charles, E., Chekhtman, A., Chiang, J., Ciprini, S., Claus, R., Cohen-Tanugi, J., Connaughton, V., Conrad, J., Cutini, S., Dennis, B.R., de Palma, F., Dermer, C.D., Digel, S.W., Silva, E.d.C.e., Drell, P.S., Drlica-Wagner, A., Dubois, R., Favuzzi, C., Fegan, S.J., Ferrara, E.C., Fortin, P., Fukazawa, Y., Fusco, P., Gargano, F., Germani, S., Giglietto, N., Giordano, F., Giroletti, M., Glanzman, T., Godfrey, G., Grillo, L., Grove, J.E., Gruber, D., Guiriec, S., Hadasch, D., Hayashida, M., Hays, E., Horan, D., Iafrate, G., Jóhannesson, G., Johnson, A.S., Johnson, W.N., Kamae, T., Kippen, R.M., Knödlseder, J., Kuss, M., Lande, J., Latronico, L., Longo, F., Loparco, F., Lott, B., Lovellette, M.N., Lubrano, P., Mazziotta, M.N., McEnery, J.E., Meegan, C., Mehault, J., Michelson, P.F., Mitthumsiri, W., Monte, C., Monzani, M.E., Morselli, A., Moskalenko, I.V., Murgia, S., Murphy, R., Naumann-Godo, M., Nuss, E., Nymark, T., Ohno, M., Ohsugi, T., Okumura, A., Omodei, N., Orlando, E., Paciesas, W.S., Panetta, J.H., Parent, D., Pesce-Rollins, M., Petrosian, V., Pierbattista, M., Piron, F., Pivato, G., Poon, H., Porter, T.A., Preece, R., Rainò, S., Rando, R., Razzano, M., Razzaque, S., Reimer, A., Reimer, O., Ritz, S., Sbarra, C., Schwartz, R.A., Sgrò, C., Share, G.H., Siskind, E.J., Spinelli, P., Takahashi, H., Tanaka, T., Tanaka, Y., Thayer, J.B., Tibaldo, L., Tinivella, M., Tolbert, A.K., Tosti, G., Troja, E., Uchiyama, Y., Usher, T.L., Vandenbroucke, J., Vasileiou, V., Vianello, G., Vitale, V., von Kienlin, A., Waite, A.P., Wilson-Hodge, C., Wood, D.L., Wood, K.S., Yang, Z., Fermi LAT Collaboration: 2012, Fermi detection of \(\gamma \)-ray emission from the M2 soft X-ray flare on 2010 June 12. Astrophys. J. 745, 144. DOI. ADS. ADSGoogle Scholar
  2. Ackermann, M., Ajello, M., Albert, A., Atwood, W.B., Baldini, L., Barbiellini, G., Bastieri, D., Bellazzini, R., Bissaldi, E., Blandford, R.D., Bonino, R., Bottacini, E., Bregeon, J., Bruel, P., Buehler, R., Caliandro, G.A., Cameron, R.A., Caragiulo, M., Caraveo, P.A., Cavazzuti, E., Cecchi, C., Chekhtman, A., Chiang, J., Chiaro, G., Ciprini, S., Claus, R., Cohen-Tanugi, J., Costanza, F., Cuoco, A., Cutini, S., D’Ammando, F., de Angelis, A., de Palma, F., Desiante, R., Digel, S.W., Di Venere, L., Drell, P.S., Favuzzi, C., Fegan, S.J., Focke, W.B., Franckowiak, A., Funk, S., Fusco, P., Gargano, F., Gasparrini, D., Giglietto, N., Giordano, F., Giroletti, M., Glanzman, T., Godfrey, G., Grenier, I.A., Grove, J.E., Guiriec, S., Harding, A.K., Hewitt, J.W., Horan, D., Hou, X., Iafrate, G., Jóhannesson, G., Kamae, T., Kuss, M., Larsson, S., Latronico, L., Li, J., Li, L., Longo, F., Loparco, F., Lovellette, M.N., Lubrano, P., Magill, J., Maldera, S., Manfreda, A., Mayer, M., Mazziotta, M.N., Michelson, P.F., Mitthumsiri, W., Mizuno, T., Monzani, M.E., Morselli, A., Murgia, S., Nuss, E., Omodei, N., Orlando, E., Ormes, J.F., Paneque, D., Perkins, J.S., Pesce-Rollins, M., Petrosian, V., Piron, F., Pivato, G., Rainò, S., Rando, R., Razzano, M., Reimer, A., Reimer, O., Reposeur, T., Sgrò, C., Siskind, E.J., Spada, F., Spandre, G., Spinelli, P., Takahashi, H., Thayer, J.B., Thompson, D.J., Tibaldo, L., Torres, D.F., Tosti, G., Troja, E., Vianello, G., Winer, B.L., Wood, K.S., Yassine, M., Cerutti, F., Ferrari, A., Sala, P.R., Fermi LAT Collaboration: 2016, Measurement of the high-energy gamma-ray emission from the Moon with the Fermi Large Area Telescope. Phys. Rev. D 93(8), 082001. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell’Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Cadenas, J.J.G., González, I., Abril, G.G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F.W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampén, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., de Freitas, P.M., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O’Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M.G., Ranjard, F., Rybin, A., Sadilov, S., Salvo, E.D., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Tehrani, E.S., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J.P., Wenaus, T., Williams, D.C., Wright, D., Yamada, T., Yoshida, H., Zschiesche, D.: 2003, Geant4: A simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 506(3), 250. DOI. ADSCrossRefGoogle Scholar
  4. Andersen, V., Ballarini, F., Battistoni, G., Campanella, M., Carboni, M., Cerutti, F., Empl, A., Fassò, A., Ferrari, A., Gadioli, E., Garzelli, M.V., Lee, K., Ottolenghi, A., Pelliccioni, M., Pinsky, L.S., Ranft, J., Roesler, S., Sala, P.R., Wilson, T.L.: 2004, The FLUKA code for space applications: Recent developments. Adv. Space Res. 34(6), 1302. ADSCrossRefGoogle Scholar
  5. Asplund, M., Grevesse, N., Sauval, A.J., Scott, P.: 2009, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Battistoni, G., Cerutti, F., Engel, R., Fassò, A., Ferrari, A., Gadioli, E., Garzelli, M.V., Ranft, J., Roesler, S., Sala, P.R.: 2006, Recent developments in the FLUKA nuclear reaction models. In: Gadioli, E. (ed.) Proc. 11th Int. Conf. on Nuclear Reaction Mechanisms, 483. Google Scholar
  7. Battistoni, G., Cerutti, F., Fassò, A., Ferrari, A., Garzelli, M.V., Lantz, M., Muraro, S., Pinsky, L.S., Ranft, J., Roesler, S., Sala, P.R.: 2008, Secondary cosmic ray particles due to GCR interactions in the Earth’s atmosphere. In: Trache, L., Stoica, S. (eds.) Exotic Nuclei and Nuclear/Particle Astrophysics (II), AIP Conference Series 972, 449. DOI. ADS. CrossRefGoogle Scholar
  8. Battistoni, G., Boehlen, T., Cerutti, F., Chin, P.W., Esposito, L.S., Fassò, A., Ferrari, A., Lechner, A., Empl, A., Mairani, A., Mereghetti, A., Ortega, P.G., Ranft, J., Roesler, S., Sala, P.R., Vlachoudis, V., Smirnov, G.: 2015, Overview of the FLUKA code. Ann. Nucl. Energy 82, 10. CrossRefGoogle Scholar
  9. Berger, M.J., Coursey, J.S., Zuckerand, M.A., Chang, J.: 1999, ESTAR, PSTAR and ASTAR: Computer programs for calculating stopping-power and range tables for electrons, protons and helium ions [Online; Accessed 17 August 2018]. http://www.nist.gov/pml/data/star/.
  10. Berger, M.J., Hubbell, J.H., Seltzer, S.M., Chang, J., Coursey, J.S., Sukumar, R., Zucker, D.S., Olsen, K.: 2010, XCOM: Photon Cross Sections Database. NIST Standard Reference Database 8 (XGAM) [Online; Accessed 17 August 2018]. https://www.nist.gov/pml/xcom-photon-cross-sections-database.
  11. Bethe, H.A.: 1953, Molière’s theory of multiple scattering. Phys. Rev. 89, 1259. ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. Bethe, H.A., Heitler, W.: 1934, On the stopping of fast particles and on the creation of positive electrons. Proc. Roy. Soc. A 146, 83. ADSzbMATHCrossRefGoogle Scholar
  13. Capella, A., Sukhatme, U., Tan, C.-I., Van, J.T.T.: 1994, Dual parton model. Phys. Rep. 236, 225. ADSCrossRefGoogle Scholar
  14. Cerutti, F., Battistoni, G., Capezzali, G., Colleoni, P., Ferrari, A., Gadioli, E., Mairani, A., Pepe, A.: 2006, Low energy nucleus–nucleus reactions: The BME approach and its interface with FLUKA. In: Proc. 11th International Conference on Nuclear Reaction Mechanisms, Varenna (Italy), June 12 – 16, 2006. Google Scholar
  15. Chupp, E.L., Debrunner, H., Flueckiger, E., Forrest, D.J., Golliez, F., Kanbach, G., Vestrand, W.T., Cooper, J., Share, G.: 1987, Solar neutron emissivity during the large flare on 1982 June 3. Astrophys. J. 318, 913. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Claret, A., Brugger, M., Combier, N., Ferrari, A., Laurent, P.: 2014, FLUKA calculation of the neutron albedo encountered at low Earth orbits. IEEE Trans. Nucl. Sci. 61, 3363. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Dermer, C.D.: 1986a, Binary collision rates of relativistic thermal plasmas. II – Spectra. Astrophys. J. 307, 47. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Dermer, C.D.: 1986b, Secondary production of neutral pi-mesons and the diffuse galactic gamma radiation. Astron. Astrophys. 157, 223. ADS. ADSGoogle Scholar
  19. Emmett, M.B.: 1975, Morse Monte Carlo radiation transport code system. ORNL-4972. DOI.
  20. Emslie, A.G., Kucharek, H., Dennis, B.R., Gopalswamy, N., Holman, G.D., Share, G.H., Vourlidas, A., Forbes, T.G., Gallagher, P.T., Mason, G.M., Metcalf, T.R., Mewaldt, R.A., Murphy, R.J., Schwartz, R.A., Zurbuchen, T.H.: 2004, Energy partition in two solar flare/CME events. J. Geophys. Res. Space Phys. 109(A18), A10104. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Emslie, A.G., Dennis, B.R., Holman, G.D., Hudson, H.S.: 2005, Refinements to flare energy estimates: A followup to “Energy partition in two solar flare/CME events” by A.G. Emslie et al. J. Geophys. Res. Space Phys. 110(A9), A11103. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Fassò, A., Ferrari, A., Ranft, J., Sala, P.R.: 1994, FLUKA: Performances and applications in the intermediate energy range. In: Proc. AEN/NEA Specialists’ Meeting on Shielding Aspects of Accelerators, Targets and Irradiation Facilities, 287. Google Scholar
  23. Fassò, A., Ferrari, A., Ranft, J., Sala, P.R.: 1997, New developments in FLUKA modelling of hadronic and em interactions. In: Hirayama, H. (ed.) Proc. 3rd Workshop on Simulating Accelerator Radiation Environments (SARE 3), 32. Google Scholar
  24. Ferrari, A., Sala, P.R.: 1994, A new model for hadronic interactions at intermediate energies for the FLUKA code. In: Dragovitsch, P., Linn, S.L., Burbank, M. (eds.) Proc. MC93 Int. Conf. on Monte Carlo Simulation in High Energy and Nuclear Physics, 277. Google Scholar
  25. Ferrari, A., Sala, P.R.: 1998, The physics of high energy reactions. In: Gandini, A., Reffo, G. (eds.) Proc. Workshop on Nuclear Reaction Data and Nuclear Reactors Physics, Design and Safety, 424. Google Scholar
  26. Ferrari, A., Sala, P.R., Guaraldi, R., Padoani, F.: 1992, An improved multiple scattering model for charged particle transport. Nucl. Instrum. Methods B 71, 412. ADSCrossRefGoogle Scholar
  27. Ferrari, A., Sala, P.R., Ranft, J., Roesler, S.: 1996, Cascade particles, nuclear evaporation, and residual nuclei in high-energy hadron – Nucleus interactions. Z. Phys. C 70, 413. CrossRefGoogle Scholar
  28. Ferrari, A., Sala, P.R., Fassò, A., Ranft, J.: 2011, FLUKA: A multiple-particle code. Technical Report CERN-2005-10, CERN. Google Scholar
  29. Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft System. Solar Phys. 182, 497. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Harris, M.J., Tatischeff, V., Kiener, J., Gros, M., Weidenspointner, G.: 2007, High resolution spectroscopy of flares on the east and west limbs of the Sun. Astron. Astrophys. 461(2), 723. DOI. ADSCrossRefGoogle Scholar
  31. Holman, G.D., Aschwanden, M.J., Aurass, H., Battaglia, M., Grigis, P.C., Kontar, E.P., Liu, W., Saint-Hilaire, P., Zharkova, V.V.: 2011, Implications of X-ray observations for electron acceleration and propagation in solar flares. Space Sci. Rev. 159, 107. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Hua, X.M., Lingenfelter, R.E.: 1987, Solar flare neutron and accelerated ion angular distributions. Astrophys. J. 323, 779. DOI. ADSCrossRefGoogle Scholar
  33. Hua, X.-M., Kozlovsky, B., Lingenfelter, R.E., Ramaty, R., Stupp, A.: 2002, Angular and energy-dependent neutron emission from solar flare magnetic loops. Astrophys. J. Suppl. Ser. 140(2), 563. ADSCrossRefGoogle Scholar
  34. Kafexhiu, E., Romoli, C., Taylor, A.M., Aharonian, F.: 2018, Energetic gamma-ray emission from solar flares. Astrophys. J. 864(2), 148. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Kane, S.R.: 1974, Impulsive (flash) phase of solar flares: Hard X-ray, microwave, EUV and optical observations. In: Newkirk, G.A. (ed.) Coronal Disturbances, IAU Symposium 57, 105. ADS. CrossRefGoogle Scholar
  36. Kocharov, L., Debrunner, H., Kovaltsov, G., Lockwood, J., McConnell, M., Nieminen, P., Rank, G., Ryan, J., Schoenfelder, V.: 1998, Deduced spectrum of interacting protons accelerated after the impulsive phase of the 15 June 1991 solar flare. Astron. Astrophys. 340, 257. ADS. ADSGoogle Scholar
  37. Koning, A.J., Hilaire, S., Duijvestijn, M.C.: 2005, Talys: Comprehensive nuclear reaction modeling. AIP Conf. Proc. 769(1), 1154. ADSCrossRefGoogle Scholar
  38. Kontar, E.P., Brown, J.C., Emslie, A.G., Hajdas, W., Holman, G.D., Hurford, G.J., Kašparová, J., Mallik, P.C.V., Massone, A.M., McConnell, M.L., Piana, M., Prato, M., Schmahl, E.J., Suarez-Garcia, E.: 2011, Deducing electron properties from hard X-ray observations. Space Sci. Rev. 159, 301. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Kozlovsky, B., Lingenfelter, R.E., Ramaty, R.: 1987, Positrons from accelerated particle interactions. Astrophys. J. 316, 801. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Kozlovsky, B., Murphy, R.J., Ramaty, R.: 2002, Nuclear deexcitation gamma-ray lines from accelerated particle interactions. Astrophys. J. Suppl. Ser. 141, 523. ADSCrossRefGoogle Scholar
  41. Lingenfelter, R.E., Ramaty, R.: 1967, In: Shen, B.S.P. (ed.) High Energy Nuclear Reactions in Solar Flares, 99. Google Scholar
  42. Lockwood, J.A., Debrunner, H., Ryan, J.M.: 1997, The relationship between solar flare gamma-ray emission and neutron production. Solar Phys. 173, 151. DOI. ADS. ADSCrossRefGoogle Scholar
  43. MacKinnon, A.: 2014, High energy particles in solar flares: Observations, mechanisms and transport. In: 40th COSPAR Scientific Assembly, COSPAR Meeting 40. ADS. Google Scholar
  44. MacKinnon, A.L., Szpigel, S., de Castro, C.G.G., Tuneu, J.: 2019, FLUKA simulations of pion decay gamma-radiation from energetic flare ions. Solar Phys. Submitted. Google Scholar
  45. Mandzhavidze, N., Ramaty, R.: 1992, High-energy gamma-ray emission from pion decay in a solar flare magnetic loop. Astrophys. J. 389, 739. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Mandzhavidze, N., Ramaty, R.: 1993, Particle acceleration in solar flares. Nucl. Phys. B, Proc. Suppl. 33(1), 141. DOI. ADSCrossRefGoogle Scholar
  47. Meegan, C., Lichti, G., Bhat, P.N., Bissaldi, E., Briggs, M.S., Connaughton, V., Diehl, R., Fishman, G., Greiner, J., Hoover, A.S., van der Horst, A.J., von Kienlin, A., Kippen, R.M., Kouveliotou, C., McBreen, S., Paciesas, W.S., Preece, R., Steinle, H., Wallace, M.S., Wilson, R.B., Wilson-Hodge, C.: 2009, The Fermi Gamma-Ray Burst Monitor. Astrophys. J. 702, 791. DOI. ADS. ADSCrossRefGoogle Scholar
  48. Murphy, R., Dermer, C.D., Ramaty, R.: 1987, High-energy processes in solar flares. Astrophys. J. Suppl. Ser. 63, 721. ADSCrossRefGoogle Scholar
  49. Murphy, R.J., Kozlovsky, B., Share, G.H.: 2016, Evidence for enhanced \(^{3}\text{He}\) in flare-accelerated particles based on new calculations of the gamma-ray line spectrum. Astrophys. J. 833(2), 196. DOI. ADS. ADSGoogle Scholar
  50. Murphy, R., Share, G.: 2018, Compton scattering of deexcitation-line and continuum gamma rays in solar flares. Solar Phys. 293(12), 163. DOI. ADSCrossRefGoogle Scholar
  51. Murphy, R.J., Share, G.H., Grove, J.E., Johnson, W.N., Kinzer, R.L., Kurfess, J.D., Strickman, M.S., Jung, G.V.: 1997, Accelerated particle composition and energetics and ambient abundances from gamma-ray spectroscopy of the 1991 June 4 solar flare. Astrophys. J. 490, 883. ADSCrossRefGoogle Scholar
  52. Murphy, R.J., Share, G.H., Skibo, J.G., Kozlovsky, B.: 2005, The physics of positron annihilation in the solar atmosphere. Astrophys. J. Lett. 161(2), 495. DOI. ADS. ADSCrossRefGoogle Scholar
  53. Murphy, R.J., Kozlovsky, B., Share, G.H., Hua, X.-M., Ligenfelter, R.E.: 2007, Using gamma-ray and neutron emission to determine solar flare accelerated particle spectra and composition and the conditions within the flare magnetic loop. Astrophys. J. Suppl. Ser. 168, 167. ADSCrossRefGoogle Scholar
  54. Murphy, R.J., Kozlovsky, B., Kiener, J., Share, G.H.: 2009, Nuclear gamma-ray de-excitation lines and continuum from accelerated particle interactions in solar flares. Astrophys. J. Suppl. Ser. 183, 142. ADSCrossRefGoogle Scholar
  55. Pelassa, V., Preece, R., Piron, F., Omodei, N., Guiriec, S., Fermi GBM Collaboration: 2010, The LAT low-energy technique for Fermi gamma-ray bursts spectral analysis. arXiv e-prints. arXiv.
  56. Pelowitz, D.E.: 2013, MCNP6 user’s manual, version 1. 0. Technical Report LA-CP-13-00634, Los Alamos National Laboratory. Google Scholar
  57. Ramaty, R., Kozlovsky, B., Lingenfelter, R.E.: 1979, Nuclear gamma-rays from energetic particle interactions. Astrophys. J. Suppl. Ser. 40, 487. ADSCrossRefGoogle Scholar
  58. Ramaty, R., Mandzhavidze, N., Kozlovsky, B.: 1996, Solar atmospheric abundances from gamma ray spectroscopy. In: Ramaty, R., Mandzhavidze, N., Hua, X.-M. (eds.) AIP Conference Series 374, 172. DOI. ADS. CrossRefGoogle Scholar
  59. Roesler, S., Engel, R., Ranft, J.: 2001, The Monte Carlo event generator DPMJET-III. In: Kling, A., Baräo, F.J.C., Nakagawa, M., Távora, L., Vaz, P. (eds.) Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications, Springer, Berlin, 1033. ISBN 978-3-642-18211-2. CrossRefGoogle Scholar
  60. Share, G.H., Murphy, R.J.: 2006, Gamma radiation from flare-accelerated particles impacting the Sun. In: Washington DC American Geophysical Union Geophysical Monograph Series 165, 177. DOI. ADS. CrossRefGoogle Scholar
  61. Sorge, H., Stöcker, H., Greiner, W.: 1989, Poincaré invariant Hamiltonian dynamics: Modelling multi-hadronic interactions in a phase space approach. Ann. Phys. 192, 266. DOI. ADS. ADSzbMATHCrossRefGoogle Scholar
  62. Sternheimer, R.M., Berger, M.J., Seltzer, S.M.: 1984, Density effect for the ionization loss of charged particles in various substances. At. Data Nucl. Data Tables 30, 261. ADSCrossRefGoogle Scholar
  63. Tang, S., Smith, D.M.: 2010, GEANT4 simulations of gamma-ray emission from accelerated particles in solar flares. Astrophys. J. 721(2), 1174. ADSCrossRefGoogle Scholar
  64. Tuneu, J., Szpigel, S., Giménez de Castro, G., MacKinnon, A.: 2017, Contribution of energetic ion secondary particles to solar flare radio spectra. In: Nandy, D., Valio, A., Petit, P. (eds.) Living Around Active Stars, IAU Symposium 328, 120. DOI. ADS. CrossRefGoogle Scholar
  65. Vernazza, J.E., Avrett, E.H., Loeser, R.: 1981, Structure of the solar chromosphere. III – Models of the EUV brightness components of the quiet-Sun. Astrophys. J. Suppl. Ser. 45, 635. DOI. ADS. ADSCrossRefGoogle Scholar
  66. Vilmer, N., MacKinnon, A.L., Hurford, G.J.: 2011, Properties of energetic ions in the solar atmosphere from \(\gamma \)-ray and neutron observations. Space Sci. Rev. 159, 167. ADSGoogle Scholar
  67. Vilmer, N., MacKinnon, A.L., Trottet, G., Barat, C.: 2003, High energy particles accelerated during the large solar flare of 1990 May 24: X/\(\gamma \)-ray observations. Astron. Astrophys. 412, 865. DOI. ADS. ADSGoogle Scholar
  68. Watanabe, K., Gros, M., Stoker, P.H., Kudela, K., Lopate, C., Valdés-Galicia, J.F., Hurtado, A., Musalem, O., Ogasawara, R., Mizumoto, Y., Nakagiri, M., Miyashita, A., Matsubara, Y., Sako, T., Muraki, Y., Sakai, T., Shibata, S.: 2006, Solar neutron events of 2003 October – November. Astrophys. J. 636, 1135. DOI. ADS. ADSCrossRefGoogle Scholar
  69. Ziegler, J.F., Andersen, H.H.: 1977, The Stopping and Ranges of Ions in Matter. 1 – 4, Pergamon Press, New York. Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centro de Rádio-Astronomia e Astrofísica Mackenzie (CRAAM), Escola de EngenhariaUniversidade Presbiteriana MackenzieSão PauloBrazil
  2. 2.Instituto de Astronomía y Física del EspacioCONICETBuenos AiresArgentina
  3. 3.School of Physics and AstronomyUniversity of GlasgowGlasgowUK

Personalised recommendations