Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Magnetic Power Spectra of Emerging Active Regions

Abstract

Magnetic field data provided by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory were utilized to explore the changes in the magnetic energy of four active regions (ARs) during their emergence. We found that at the very early stage of the magnetic flux emergence, an abrupt steepening of the magnetic power spectrum takes place leading to rapid increase of the absolute value of the negative spectra power index \(\alpha \) in \(E(k)\sim k^{\alpha }\). As the emergence proceeds, the energy increases at all scales simultaneously implying that elements of all sizes do appear in the photosphere. Meanwhile, the energy gain at scales larger than \({\approx}\,10~\mbox{Mm}\) prevails over that at smaller scales. Both direct (i.e., fragmentation of large structures into smaller ones) and inverse (i.e., merging of small magnetic features into larger elements) cascades are readily observed during the emergence. However, in the case of inverse cascade, the total energy gained at large scales exceeds the energy loss at smaller scales assuming simultaneous appearance of large-scale magnetic entities from beneath the photosphere. We conclude that most of the time the energy may grow at all scales. We also cannot support the point of view regarding the dominant role of the inverse cascade in the formation of an AR. Although coalescence of small magnetic elements into larger pores and sunspots is observed, our analysis shows that the prevailed energy contribution to an AR comes from emergence of large-scale structures.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Abramenko, V.I.: 2005, Relationship between magnetic power spectrum and flare productivity in solar active regions. Astrophys. J. 629, 1141. DOI . ADS

  2. Abramenko, V., Yurchyshyn, V., Wang, H., Goode, P.R.: 2001, Magnetic power spectra derived from ground and space measurements of the solar magnetic fields. Solar Phys. 201, 225. DOI . ADS .

  3. Bernasconi, P.N., Rust, D.M., Georgoulis, M.K., Labonte, B.J.: 2002, Moving dipolar features in an emerging flux region. Solar Phys. 209, 119. DOI . ADS .

  4. Biskamp, D.: 1993, Nonlinear Magnetohydrodynamics, Cambridge Monographs on Plasma Physics, Cambridge University Press, New York, 378. ADS .

  5. Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., Leka, K.D.: 2014, The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs – Space-Weather HMI Active Region Patches. Solar Phys. 289, 3549. DOI . ADS .

  6. Borrero, J.M., Tomczyk, S., Kubo, M., Socas-Navarro, H., Schou, J., Couvidat, S., Bogart, R.: 2011, VFISV: Very Fast Inversion of the Stokes Vector for the Helioseismic and Magnetic Imager. Solar Phys. 273, 267. DOI . ADS .

  7. Brants, J.J.: 1985, High-resolution spectroscopy of active regions. II Line-profile interpretation, applied to an emerging flux region. Solar Phys. 95, 15. DOI . ADS .

  8. Centeno, R.: 2012, The naked emergence of solar active regions observed with SDO/HMI. Astrophys. J. 759, 72. DOI . ADS .

  9. Chen, F., Rempel, M., Fan, Y.: 2017, Emergence of magnetic flux generated in a solar convective dynamo. I. The formation of sunspots and active regions, and the origin of their asymmetries. Astrophys. J. 846, 149. DOI . ADS .

  10. Cheung, M.C.M., Isobe, H.: 2014, Flux emergence (theory). Living Rev. Solar Phys. 11, 3. DOI . ADS .

  11. Cheung, M.C.M., van Driel-Gesztelyi, L., Martínez Pillet, V., Thompson, M.J.: 2017, The life cycle of active region magnetic fields. Space Sci. Rev. 210, 317. DOI . ADS .

  12. Couvidat, S., Rajaguru, S.P., Wachter, R., Sankarasubramanian, K., Schou, J., Scherrer, P.H.: 2012a, Line-of-sight observables algorithms for the Helioseismic and Magnetic Imager (HMI) instrument tested with Interferometric Bidimensional Spectrometer (IBIS) observations. Solar Phys. 278, 217. DOI . ADS .

  13. Couvidat, S., Schou, J., Shine, R.A., Bush, R.I., Miles, J.W., Scherrer, P.H., Rairden, R.L.: 2012b, Wavelength dependence of the Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO). Solar Phys. 275, 285. DOI . ADS .

  14. Fan, Y.: 2009, Magnetic fields in the solar convection zone. Living Rev. Solar Phys. 6, 4. DOI . ADS .

  15. Fan, Y., Fang, F.: 2014, A simulation of convective dynamo in the solar convective envelope: maintenance of the solar-like differential rotation and emerging flux. Astrophys. J. 789, 35. DOI . ADS .

  16. Hewett, R.J., Gallagher, P.T., McAteer, R.T.J., Young, C.A., Ireland, J., Conlon, P.A., Maguire, K.: 2008, Multiscale analysis of active region evolution. Solar Phys. 248, 311. DOI . ADS .

  17. Hoeksema, J.T., Liu, Y., Hayashi, K., Sun, X., Schou, J., Couvidat, S., Norton, A., Bobra, M., Centeno, R., Leka, K.D., Barnes, G., Turmon, M.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: overview and performance. Solar Phys. 289, 3483. DOI . ADS .

  18. Kutsenko, A.S., Abramenko, V.I.: 2016, Using SDO/HMI magnetograms as a source of the solar mean magnetic field data. Solar Phys. 291, 1613. DOI . ADS .

  19. Leka, K.D., Barnes, G., Wagner, E.L.: 2017, Evaluating (and improving) estimates of the solar radial magnetic field component from line-of-sight magnetograms. Solar Phys. 292, 36. DOI . ADS .

  20. Leka, K.D., Barnes, G., Crouch, A.D., Metcalf, T.R., Gary, G.A., Jing, J., Liu, Y.: 2009, Resolving the \(180^{\circ }\) ambiguity in solar vector magnetic field data: evaluating the effects of noise, spatial resolution, and method assumptions. Solar Phys. 260, 83. DOI . ADS .

  21. Lites, B.W., Skumanich, A., Martinez Pillet, V.: 1998, Vector magnetic fields of emerging solar flux. I. Properties at the site of emergence. Astron. Astrophys. 333, 1053. ADS .

  22. Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, R.I., Duvall, T.L., Hayashi, K., Sun, X., Zhao, X.: 2012, Comparison of line-of-sight magnetograms taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager. Solar Phys. 279, 295. DOI . ADS .

  23. Mandage, R.S., McAteer, R.T.J.: 2016, On the non-Kolmogorov nature of flare-productive solar active regions. Astrophys. J. 833, 237. DOI . ADS .

  24. Metcalf, T.R.: 1994, Resolving the 180-degree ambiguity in vector magnetic field measurements: the ‘minimum’ energy solution. Solar Phys. 155, 235. DOI . ADS .

  25. Norton, A.A., Graham, J.P., Ulrich, R.K., Schou, J., Tomczyk, S., Liu, Y., Lites, B.W., López Ariste, A., Bush, R.I., Socas-Navarro, H., Scherrer, P.H.: 2006, Spectral line selection for HMI: a comparison of Fe i 6173 Å and Ni i 6768 Å. Solar Phys. 239, 69. DOI . ADS .

  26. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I. (MDI Engineering Team): 1995, The solar oscillations investigation – Michelson Doppler Imager. Solar Phys. 162, 129. DOI . ADS .

  27. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI . ADS .

  28. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI . ADS .

  29. Strous, L.H., Zwaan, C.: 1999, Phenomena in an emerging active region. II. Properties of the dynamic small-scale structure. Astrophys. J. 527, 435. DOI . ADS .

  30. van Driel-Gesztelyi, L., Green, L.M.: 2015, Evolution of active regions. Living Rev. Solar Phys. 12, 1. DOI . ADS .

  31. Zwaan, C.: 1985, The emergence of magnetic flux. Solar Phys. 100, 397. DOI . ADS .

Download references

Acknowledgements

We are grateful to the anonymous referee whose comments helped us to improve the paper. SDO is a mission for NASA’s Living With a Star (LWS) program. The SDO/HMI data were provided by the Joint Science Operation Center (JSOC). This study was supported by the Russian Science Foundation, Project 18-12-00131.

Author information

Correspondence to Alexander S. Kutsenko.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kutsenko, O.K., Kutsenko, A.S. & Abramenko, V.I. Magnetic Power Spectra of Emerging Active Regions. Sol Phys 294, 102 (2019). https://doi.org/10.1007/s11207-019-1498-3

Download citation

Keywords

  • Active regions, magnetic fields
  • Turbulence