Advertisement

Solar Physics

, 294:88 | Cite as

What the Sudden Death of Solar Cycles Can Tell Us About the Nature of the Solar Interior

  • Scott W. McIntoshEmail author
  • Robert J. Leamon
  • Ricky Egeland
  • Mausumi Dikpati
  • Yuhong Fan
  • Matthias Rempel
Editor’s Choice

Abstract

We observe the abrupt end of solar-activity cycles at the Sun’s Equator by combining almost 140 years of observations from ground and space. These “terminator” events appear to be very closely related to the onset of magnetic activity belonging to the next solar cycle at mid-latitudes and the polar-reversal process at high latitudes. Using multi-scale tracers of solar activity we examine the timing of these events in relation to the excitation of new activity and find that the time taken for the solar plasma to communicate this transition is of the order of one solar rotation – but it could be shorter. Utilizing uniquely comprehensive solar observations from the Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory (SDO) we see that this transitional event is strongly longitudinal in nature. Combined, these characteristics suggest that information is communicated through the solar interior rapidly. A range of possibilities exist to explain such behavior: for example gravity waves on the solar tachocline, or that the magnetic fields present in the Sun’s convection zone could be very large, with a poloidal field strengths reaching 50 kG – considerably larger than conventional explorations of solar and stellar dynamos estimate. Regardless of the mechanism responsible, the rapid timescales demonstrated by the Sun’s global magnetic-field reconfiguration present strong constraints on first-principles numerical simulations of the solar interior and, by extension, other stars.

Keywords

Solar cycle, observations Interior, convective zone Interior, tachocline 

Notes

Acknowledgments

This work is dedicated to the memory of Michael J. Thompson – scientist, leader, mentor, colleague and friend. Special thanks to Dipankar Bannerjee, Ed Cliver, Subhamoy Chatterjee, Abhishek Srivastava, Ian Hewins, and many others for providing feedback on the material presented. This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977. The compilation of feature databases used was supported by NASA grant NNX08AU30G. We acknowledge support from Indo-US (IUSSTF) Joint Networked R&D Center IUSSTF-JC-011-2016.

Disclosure of Potential Conflicts of Interest

The authors indicate that they have no conflicts of interest.

References

  1. Alfvén, H.: 1942, Existence of electromagnetic-hydrodynamic waves. Nature 150, 405. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Barnes, G., MacGregor, K.B., Charbonneau, P.: 1998, Gravity waves in a magnetized shear layer. Astrophys. J. Lett. 498, L169. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Barnston, A.G., Livezey, R.E.: 1987, Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 115(6), 1083. DOI. ADSCrossRefGoogle Scholar
  5. Basseville, M., Nikiforov, I.V.: 1993, Detection of Abrupt Changes: Theory and Application, Prentice-Hall, Upper Saddle River. ISBN 0-13-126780-9. zbMATHGoogle Scholar
  6. Bocchino, G.: 1933, Migrazione delle protuberanze durante il ciclo undecennale dell’attività solare. Mem. Soc. Astron. Ital. 6, 479. ADS. ADSGoogle Scholar
  7. Charbonneau, P.: 2010, Dynamo models of the solar cycle. Liv. Rev. Solar Phys. 7, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Cliver, E.W.: 2014, The extended cycle of solar activity and the Sun’s 22-year magnetic cycle. Space Sci. Rev. 186, 169. DOI. ADS. ADSCrossRefGoogle Scholar
  9. De Pontieu, B., Title, A.M., Lemen, J.R., Kushner, G.D., Akin, D.J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J.F., Duncan, D.W., Freeland, S., Heyman, G.F., Hoffman, C., Hurlburt, N.E., Lindgren, R.W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C.J., Tarbell, T.D., Wülser, J.-P., Wolfson, C.J., Yanari, C., Mudge, J., Nguyen-Phuc, N., Timmons, R., van Bezooijen, R., Weingrod, I., Brookner, R., Butcher, G., Dougherty, B., Eder, J., Knagenhjelm, V., Larsen, S., Mansir, D., Phan, L., Boyle, P., Cheimets, P.N., DeLuca, E.E., Golub, L., Gates, R., Hertz, E., McKillop, S., Park, S., Perry, T., Podgorski, W.A., Reeves, K., Saar, S., Testa, P., Tian, H., Weber, M., Dunn, C., Eccles, S., Jaeggli, S.A., Kankelborg, C.C., Mashburn, K., Pust, N., Springer, L., Carvalho, R., Kleint, L., Marmie, J., Mazmanian, E., Pereira, T.M.D., Sawyer, S., Strong, J., Worden, S.P., Carlsson, M., Hansteen, V.H., Leenaarts, J., Wiesmann, M., Aloise, J., Chu, K.-C., Bush, R.I., Scherrer, P.H., Brekke, P., Martinez-Sykora, J., Lites, B.W., McIntosh, S.W., Uitenbroek, H., Okamoto, T.J., Gummin, M.A., Auker, G., Jerram, P., Pool, P., Waltham, N.: 2014, The Interface Region Imaging Spectrograph (IRIS). Solar Phys. 289, 2733. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Dikpati, M., McIntosh, S.W., Chatterjee, S., Banerjee, D., Yellin-Bergovoy, R., Srivastava, A.: 2019, Triggering the birth of new cycle’s sunspots by solar tsunami. Sci. Rep. 9, 2035. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Elmore, D.F., Rimmele, T., Casini, R., Hegwer, S., Kuhn, J., Lin, H., McMullin, J.P., Reardon, K., Schmidt, W., Tritschler, A., Wöger, F.: 2014, The Daniel K. Inouye Solar Telescope first light instruments and critical science plan. In: Ground-Based and Airborne Instrumentation for Astronomy V, Proc. Soc. Phot. Int. 9147, 914707. DOI. ADS. CrossRefGoogle Scholar
  13. Fan, Y., Fang, F.: 2014, A simulation of convective dynamo in the solar convective envelope: Maintenance of the solar-like differential rotation and emerging flux. Astrophys. J. 789, 35. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Ferriz-Mas, A., Schmitt, D., Schüssler, M.: 1994, A dynamo effect due to instability of magnetic flux tubes. Astron. Astrophys. 289, 949. ADS. ADSGoogle Scholar
  15. Gibson, S.E.: 2018, Solar prominences: theory and models. Liv. Rev. Solar Phys. 15(1), 7. DOI. ADSCrossRefGoogle Scholar
  16. Golub, L.: 1980, X-ray bright points and the solar cycle. Phil. Trans. Roy. Soc. A 297, 595. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Golub, L., Vaiana, G.S.: 1978, Differential rotation rates for short-lived regions of emerging magnetic flux. Astrophys. J. Lett. 219, L55. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Golub, L., Krieger, A.S., Silk, J.K., Timothy, A.F., Vaiana, G.S.: 1974, Solar X-ray bright points. Astrophys. J. Lett. 189, L93. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Hale, G.E., Nicholson, S.B.: 1925, The law of sun-spot polarity. Astrophys. J. 62, 270. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Hansen, R., Hansen, S.: 1975, Global distribution of filaments during solar cycle No. 20. Solar Phys. 44, 225. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Hathaway, D.H.: 2010, The solar cycle. Liv. Rev. Solar Phys. 7, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Hathaway, D.H., Upton, L., Colegrove, O.: 2013, Giant convection cells found on the Sun. Science 342, 1217. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Hotta, H., Rempel, M., Yokoyama, T.: 2016, Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations. Science 351, 1427. DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchère, F., Delaboudinière, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Matsuno, T.: 1966, Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Japan 44, 25. CrossRefGoogle Scholar
  28. Maunder, E.W.: 1904, Note on the Distribution of sun-spots in heliographic latitude, 1874 – 1902. Mon. Not. Roy. Astron. Soc. 64, 747. DOI. ADS. ADSCrossRefGoogle Scholar
  29. McIntosh, S.W., Gurman, J.B.: 2005, Nine years of EUV bright points. Solar Phys. 228, 285. DOI. ADS. ADSCrossRefGoogle Scholar
  30. McIntosh, S.W., Leamon, R.J.: 2017, Deciphering solar magnetic activity: Spotting solar cycle 25. Front. Astron. Space Sci. 4, 4. DOI. ADS. ADSCrossRefGoogle Scholar
  31. McIntosh, S.W., Leamon, R.J., Gurman, J.B., Olive, J.-P., Cirtain, J.W., Hathaway, D.H., Burkepile, J., Miesch, M., Markel, R.S., Sitongia, L.: 2013, Hemispheric asymmetries of solar photospheric magnetism: Radiative, particulate, and heliospheric impacts. Astrophys. J. 765, 146. DOI. ADS. ADSCrossRefGoogle Scholar
  32. McIntosh, S.W., Wang, X., Leamon, R.J., Davey, A.R., Howe, R., Krista, L.D., Malanushenko, A.V., Markel, R.S., Cirtain, J.W., Gurman, J.B., Pesnell, W.D., Thompson, M.J.: 2014a, Deciphering solar magnetic activity, I: On the relationship between the sunspot cycle and the evolution of small magnetic features. Astrophys. J. 792, 12. DOI. ADS. ADSCrossRefGoogle Scholar
  33. McIntosh, S.W., Wang, X., Leamon, R.J., Scherrer, P.H.: 2014b, Identifying potential markers of the Sun’s giant convective scale. Astrophys. J. Lett. 784, L32. DOI. ADS. ADSCrossRefGoogle Scholar
  34. McIntosh, S.W., Leamon, R.J., Krista, L.D., Title, A.M., Hudson, H.S., Riley, P., Harder, J.W., Kopp, G., Snow, M., Woods, T.N., Kasper, J.C., Stevens, M.L., Ulrich, R.K.: 2015, The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Comm. 6, 6491. DOI. ADS. ADSCrossRefGoogle Scholar
  35. McIntosh, S.W., Cramer, W.J., Pichardo Marcano, M., Leamon, R.J.: 2017, The detection of Rossby-like waves on the Sun. Nat. Astron. 1, 0086. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Moreno-Insertis, F.: 1983, Rise times of horizontal magnetic flux tubes in the convection zone of the sun. Astron. Astrophys. 122, 241. ADS. ADSGoogle Scholar
  37. Morgan, H., Taroyan, Y.: 2017, Global conditions in the solar corona from 2010 to 2017. Sci. Adv. 3(7), e1602056. DOI. ADSCrossRefGoogle Scholar
  38. Pedlosky, J.: 1982, Geophysical Fluid Dynamics, Springer, Berlin. ADS. CrossRefGoogle Scholar
  39. Racine, É., Charbonneau, P., Ghizaru, M., Bouchat, A., Smolarkiewicz, P.K.: 2011, On the mode of dynamo action in a global large-eddy simulation of solar convection. Astrophys. J. 735, 46. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Saba, J.L.R., Strong, K.T., Slater, G.L.: 2005, Can we predict when the next solar cycle is about to take off? Mem. Soc. Astron. Ital. 76, 1034. ADS. ADSGoogle Scholar
  41. Schonfeld, S.J., White, S.M., Hock-Mysliwiec, R.A., McAteer, R.T.J.: 2017, The slowly varying corona, I: Daily differential emission measure distributions derived from EVE spectra. Astrophys. J. 844(2), 163. ADSCrossRefGoogle Scholar
  42. Simoniello, R., Tripathy, S.C., Jain, K., Hill, F.: 2016, A new challenge to solar dynamo models from helioseismic observations: The latitudinal dependence of the progression of the solar cycle. Astrophys. J. 828, 41. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Spiegel, E.A., Zahn, J.-P.: 1992, The solar tachocline. Astron. Astrophys. 265, 106. ADS. ADSGoogle Scholar
  44. Strong, K.T., Saba, J.L.R.: 2009, A new approach to solar cycle forecasting. Adv. Space Res. 43, 756. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Tapping, K.F.: 2013, The 10.7 cm solar radio flux (F10.7). Space Weather 11, 394. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Tlatov, A.G., Kuzanyan, K.M., Vasil’yeva, V.V.: 2016, Tilt angles of solar filaments over the period of 1919 – 2014. Solar Phys. 291, 1115. DOI. ADS. ADSCrossRefGoogle Scholar
  47. Trenberth, K.E., Branstator, G.W., Karoly, D., Kumar, A., Lau, N.-C., Ropelewski, C.: 1997, Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. 103(C7), 14291. DOI. ADSCrossRefGoogle Scholar
  48. Ulrich, R.K.: 2010, Solar meridional circulation from Doppler shifts of the Fe I line at 5250 Å as measured by the 150-foot Solar Tower Telescope at the Mt. Wilson Observatory. Astrophys. J. 725, 658. DOI. ADS. ADSCrossRefGoogle Scholar
  49. Wilson, P.R.: 1994, Solar and Stellar Activity Cycles, Cambridge University Press, Cambridge. ADS. CrossRefGoogle Scholar
  50. Wilson, P.R., Altrock, R.C., Harvey, K.L., Martin, S.F., Snodgrass, H.B.: 1988, The extended solar activity cycle. Nature 333, 748. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.National Center for Atmospheric ResearchHigh Altitude ObservatoryBoulderUSA
  2. 2.Department of AstronomyUniversity of MarylandCollege ParkUSA
  3. 3.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations