Advertisement

Solar Physics

, 294:81 | Cite as

Tomography of the Solar Corona with the Wide-Field Imager for the Parker Solar Probe

  • Alberto M. VásquezEmail author
  • Richard A. Frazin
  • Angelos Vourlidas
  • Ward B. ManchesterIV
  • Bart van der Holst
  • Russell A. Howard
  • Philippe Lamy
Article

Abstract

The Wide-field Imager for the Parker Solar Probe (PSP/WISPR) comprises two telescopes that record white-light total brightness \([B]\) images of the solar corona. Their fields of view cover a widely changing range of heliocentric heights over the 24 highly eccentric orbits planned for the mission. In this work, the capability of PSP/WISPR data to carry out tomographic reconstructions of the three-dimensional (3D) distribution of the coronal electron density is investigated. Based on the precise orbital information of the mission, \(B\)-images for Orbits 1, 12, and 24 are synthesized from a 3D magnetohydrodynamic model of the corona. For each orbit, the time series of synthetic images is used to carry out a tomographic reconstruction of the coronal electron density and results are compared with the model. As the PSP perihelion decreases, the range of heights that can be tomographically reconstructed progressively shifts to lower values, and the period required to gather the data decreases. For Orbit 1 tomographic reconstruction is not possible. For Orbit 12, tomographic reconstruction is possible in the heliocentric height range \({\approx}\, 5\,\mbox{--}\,15~\mathrm{{R}_{\odot}}\), over a region spanning up to \({\approx}\,160^{\circ}\) in Carrington longitude, with data gathered over a \({\approx}\, 3.4\) day-long period. For Orbit 24, tomographic reconstruction is possible in the heliocentric height range \({\approx}\,3\,\mbox{--}\,10~\mathrm {R}_{\odot}\), over a region spanning up to \({\approx} \,170^{\circ}\) in Carrington longitude, with data gathered over a \({\approx}\, 2.8\) day-long period.

Keywords

Spectrum, visible Solar cycle, observations Corona, structures Corona, models 

Notes

Acknowledgments

The authors are grateful for the careful read of the manuscript by the anonymous referee, which resulted in improved content and clarity of exposition. A.M. Vásquez was partially supported by ANPCyT grant PICT-2016/0221 and CONICET grant PIP-11220120100403 to IAFE. A. Vourlidas was supported by the WISPR directed work at APL ILC0381D. W.B. Manchester IV was supported by NSF project FAIN 1663800 and NASA project NNX16AL12G. R.A. Howard was supported by grants from NASA for the WISPR and SECCHI programs.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Altschuler, M.D., Perry, R.M.: 1972, On determining the electron density distribution of the solar corona from K-coronameter data. Solar Phys. 23, 410. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Butala, M.D., Hewett, R.J., Frazin, R.A., Kamalabadi, F.: 2010, Dynamic three-dimensional tomography of the solar corona. Solar Phys. 262, 495. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Frazin, R.A.: 2000, Tomography of the solar corona. I. A robust, regularized, positive estimation method. Astrophys. J. 530, 1026. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Frazin, R.A., Janzen, P.: 2002, Tomography of the solar corona. II. Robust, regularized, positive estimation of the three-dimensional electron density distribution from LASCO-C2 polarized white-light images. Astrophys. J. 570, 408. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Frazin, R.A., Lamy, P., Llebaria, A., Vásquez, A.M.: 2010, Three-dimensional electron density from tomographic analysis of LASCO-C2 images of the K-corona total brightness. Solar Phys. 265, 19. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Gardès, B., Lamy, P., Llebaria, A.: 2013, Photometric calibration of the LASCO-C2 coronagraph over 14 years (1996 – 2009). Solar Phys. 283, 667. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Jackson, B.V., Hick, P.P., Buffington, A., Bisi, M.M., Clover, J.M., Tokumaru, M., Kojima, M., Fujiki, K.: 2011, Three-dimensional reconstruction of heliospheric structure using iterative tomography: a review. J. Atmos. Solar-Terr. Phys. 73, 1214. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Lamy, P., Boclet, B., Wojak, J., Vibert, D.: 2017, Anomalous surge of the white-light corona at the onset of the declining phase of solar cycle 24. Solar Phys. 292, 60. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Minnaert, M.: 1930, On the continuous spectrum of the corona and its polarisation. With 3 figures. (Received July 30, 1930). Z. Astrophys. 1, 209. ADS. ADSzbMATHGoogle Scholar
  10. van de Hulst, H.C.: 1950, The electron density of the solar corona. Bull. Astron. Inst. Neth. 11, 135. ADS. ADSGoogle Scholar
  11. van der Holst, B., Sokolov, I.V., Meng, X., Jin, M., Manchester, W.B. IV, Tóth, G., Gombosi, T.I.: 2014, Alfvén Wave Solar Model (AWSoM): coronal heating. Astrophys. J. 782, 81. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Vibert, D., Peillon, C., Lamy, P., Frazin, R.A., Wojak, J.: 2016, Time-dependent tomographic reconstruction of the solar corona. Astron. Comput. 17, 144. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Vourlidas, A., Howard, R.A., Plunkett, S.P., Korendyke, C.M., Thernisien, A.F.R., Wang, D., Rich, N., Carter, M.T., Chua, D.H., Socker, D.G., Linton, M.G., Morrill, J.S., Lynch, S., Thurn, A., Van Duyne, P., Hagood, R., Clifford, G., Grey, P.J., Velli, M., Liewer, P.C., Hall, J.R., DeJong, E.M., Mikic, Z., Rochus, P., Mazy, E., Bothmer, V., Rodmann, J.: 2016, The Wide-Field Imager for Solar Probe Plus (WISPR). Space Sci. Rev. 204, 83. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Xiong, M., Davies, J.A., Feng, X., Li, B., Yang, L., Xia, L., Harrison, R.A., Hayashi, K., Li, H., Zhou, Y.: 2018, Prospective white-light imaging and in situ measurements of quiescent large-scale solar-wind streams from the Parker solar probe and solar orbiter. Astrophys. J. 868, 137. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Instituto de Astronomía y Física del Espacio (IAFE), National Council for Scientific and Technological Research (CONICET)University of Buenos Aires (UBA)Ciudad de Buenos AiresArgentina
  2. 2.Department of Climate and Space Sciences and Engineering (CLaSP)University of MichiganAnn ArborUSA
  3. 3.The Johns Hopkins University Applied Physics Laboratory (JHUAPL)LaurelUSA
  4. 4.Space Science Division (SSD)U.S. Naval Research Laboratory (NRL)WashingtonUSA
  5. 5.Laboratoire Atmosphères, Milieux et Observations SpatialesCNRS & UVSQYGuyancourtFrance

Personalised recommendations