Advertisement

Solar Physics

, 294:38 | Cite as

Correction to: Statistical Analysis of Solar Events Associated with Storm Sudden Commencements over One Year of Solar Maximum During Cycle 23: Propagation from the Sun to the Earth and Effects

  • K. BocchialiniEmail author
  • B. Grison
  • M. Menvielle
  • A. Chambodut
  • N. Cornilleau-Wehrlin
  • D. Fontaine
  • A. Marchaudon
  • M. Pick
  • F. Pitout
  • B. Schmieder
  • S. Régnier
  • I. Zouganelis
Correction
  • 182 Downloads
Part of the following topical collections:
  1. Earth-affecting Solar Transients

Correction to: Solar Phys (2018) 293:75   https://doi.org/10.1007/s11207-018-1278-5

Abstract Taking the 32 storm sudden commencements (SSCs) listed by the International Service of Geomagnetic Indices (ISGI) of the Observatory de l’Ebre during 2002 (solar activity maximum in Cycle 23) as a starting point, we performed a multi-criterion analysis based on observations (propagation time, velocity comparisons, sense of the magnetic field rotation, radio waves) to associate them with solar sources, identified their effects in the interplanetary medium, and looked at the response of the terrestrial ionized and neutral environment. We find that 28 SSCs can be related to 44 coronal mass ejections (CMEs), 15 with a unique CME and 13 with a series of multiple CMEs, among which 19 (68%) involved halo CMEs. Twelve of the 19 fastest CMEs with speeds greater than 1000 km s−1 are halo CMEs. For the 44 CMEs, including 21 halo CMEs, the corresponding X-ray flare classes are: 4 X-class, 19 M-class, and 21 C-class flares. The probability for an SSC to occur is 75% if the CME is a halo CME. Among the 500, or even more, front-side, non-halo CMEs recorded in 2002, only 23 could be the source of an SSC, i.e. 5%. The complex interactions between two (or more) CMEs and the modification of their trajectories have been examined using joint white-light and multiple-wavelength radio observations. The detection of long-lasting type IV bursts observed at metric–hectometric wavelengths is a very useful criterion for the CME–SSC association. The events associated with the most depressed Dst values are also associated with type IV radio bursts. The four SSCs associated with a single shock at L1 correspond to four radio events exhibiting characteristics different from type IV radio bursts. The solar-wind structures at L1 after the 32 SSCs are 12 magnetic clouds (MCs), 6 interplanetary coronal mass ejections (ICMEs) without an MC structure, 4 miscellaneous structures, which cannot unambiguously be classified as ICMEs, 5 corotating or stream interaction regions (CIRs/SIRs), one CIR caused two SSCs, and 4 shock events; notethat one CIR caused two SSCs. The 11 MCs listed in 3 or more MC catalogs covering the year 2002 are associated with SSCs. For the three most intense geomagnetic storms (based on Dst minima) related to MCs, we note two sudden increases of the Dst, at the arrival of the sheath and the arrival of the MC itself. In terms of geoeffectiveness, the relation between the CME speed and the magnetic-storm intensity, as characterized using the Dst magnetic index, is very complex, but generally CMEs with velocities at the Sun larger than 1000 km s−1 have larger probabilities to trigger moderate or intense storms. The most geoeffective events are MCs, since 92% of them trigger moderate or intense storms, followed by ICMEs (33%). At best, CIRs/SIRs only cause weak storms. We show that these geoeffective events (ICMEs or MCs) trigger an increased and combined auroral kilometric radiation (AKR) and non-thermal continuum (NTC) wave activity in the magnetosphere, an enhanced convection in the ionosphere, and a stronger response in the thermosphere. However, this trend does not appear clearly in the coupling functions, which exhibit relatively weak correlations between the solar-wind energy input and the amplitude of various geomagnetic indices, whereas the role of the southward component of the solar-wind magnetic field is confirmed. Some saturation appears for Dst values \(< -100\) nT on the integrated values of the polar and auroral indices.

3.1. Statistical Considerations on the Listed CMEs

As mentioned in the previous section, we identify one or more possible solar sources for each SSC-led event. The probability for an SSC to occur is some 75% if the CME is a halo (\(21/28\)). According to the CDAW list, more than 500 non-halo, front-side CME were observed in 2002 (1.5 per day on average). Only 23 CMEs (see Table 3) could be the sources of an SSC, i.e. about 5% (\(23/500\)).
Table 3

The 44 CMEs associated with the 32 SSCs mentioned in Table 2: 21 halo CMEs (CMEH), 9 partial-halo CMEs (CMEP), and 14 non-halos CMEs (CMEN), detected in 2002 with an identified source at the Sun. Starting from the second column on, we list the date and time of the beginning of the solar event at the origin of the CME as seen in SOHO/EIT images at 30.4 nm or 19.5 nm, source coordinates in seconds of arc from Sun center (\([0,0]\)) with positive to the west and north, and nature of the source seen in SOHO/EIT (AR = active region, Fi = filament, FL = flare, CH = coronal hole), the final height (\(h\)) in units of solar radii in the SOHO/LASCO FOV at which the CME is observed, the corresponding velocity \((V_{\odot})\) [km s−1], the acceleration (\(a\)) [m s−2], the exit time from LASCO FOV, and the flare class (GOES).

CME No.

Source (EIT)

CME (LASCO)

Flare class

Date

Time [UT]

Coord.

Source type

h

\(V_{\odot}\)

a

Exit time [UT]

CMEH01

27 Jan

12:24

(375,850)

AR

26

1000

−19.2

16:30

C

CMEN02

28 Jan

9:35

(−200,−500)

AR, Fi

12

738

35.0

13:00

C

CMEN03

24 Feb

14:45

(650,−400)

AR, Fi

6

258

5.2

17:50

C

CMEH04

15 Mar

21:48

(113,−48)

AR, Fi, CH

30

784

−17.4

4:30 (+1)

M

CMEP05

17 Mar

10:28

(−273,−233)

AR, Fi

30

931

−6.0

15:45

M

CMEH06

18 Mar

1:48

(410,−240)

AR, Fi

20

971

−2.9

6:30

M

CMEP07

19 Mar

9:24

(770,−70)

AR, Fi

28

711

−0.9

16:10

M

CMEP08

19 Mar

11:12

(770,−70)

AR, Fi

12

1030

46.4

13:45

M

CMEP09

20 Mar

23:24

(870,−270)

AR, Fi

30

1075

−0.2

4:50 (+1)

C

CMEH10

22 Mar

10:36

(980,−160)

AR, Fi

18

1685

−22.5

12:40

C

CMEH11

22 Mar

11:36

(980,−160)

AR, Fi

36

1027

14.6

18:30

M

CMEN12

11 Apr

16:24

(420,−200)

AR, Fi

20

497

−3.4

23:30

C

CMEH13

15 Apr

3:12

(252,−159)

AR

26

742

2.1

9:45

M

CMEN14

16 Apr

11:00

(910,−216)

AR, Fi

15

421

−9.1

15:45

C

CMEH15

17 Apr

7:50

(550,−130)

AR, Fi

28

1103

−19.7

12:20

M

CMEH16

21 Apr

00:48

(916,−229)

AR

25

2,388

−1.4

3:20

X

CMEN17

06 May

23:47

(800,400)

AR

28

1266

5.6

4:10 (+1)

C

CMEH18

07 May

3:36

(−214,−109)

AR, Fi

6

926

158.1

4:50

C

CMEH19

08 May

13:13

(130,−150)

AR, Fi

5

697

78.9

14:30

C

CMEH20

15 May

23:47

(−197,−316)

AR

28

506

−6.6

8:45 (+1)

C

CMEN21

17 May

00:47

(−100,−350)

Fi

20

532

5.5

8:30

C

CMEN22

17 May

7:48

(−900,200)

AR

15

616

−7.5

11:40

M

CMEN23

18 May

11:50

(−388,−455)

AR

6

614

45.6

14:00

C

CMEP24

21 May

23:24

(881,−319)

AR, Fi

28

1341

14.2

3:45 (+1)

C

CMEH25

22 May

03:12

(881,−319)

AR, Fi

28

1504

−10.4

6:50

C

CMEP26

27 May

12:23

(−250,400)

Fi

18

1122

3.8

15:50

C

CMEH27

15 Jul

19:59

(15,239)

AR, Fi

28

973

−25.6

0:20 (+1)

X

CMEP28

15 Jul

21:00

(15,239)

AR, Fi

23

1264

−7.3

0:20 (+1)

M

CMEH29

18 Jul

7:59

(500,250)

AR, FL

22

919

−30.1

11:20

X

CMEP30

18 Jul

11:30

(−730,200)

AR

23

680

−14.0

16:20

C

CMEH31

18 Jul

18:26

(−730,200)

AR

28

1788

21:20

C

CMEH32

26 Jul

21:12

(−400,−370)

AR, Fi

30

816

−0.1

4:20 (+1)

M

CMEN33

29 Jul

02:30

(150,−350)

AR

25

409

3.8

15:00

M

CMEN34

29 Jul

10:59

(150,−350)

AR

11

301

−3.8

16:00

M

CMEN35

30 Jul

00:30

(700,−700)

Fi

15

998

32

4:20

C

CMEH36

16 Aug

11:24

(−250,−200)

AR, Fi

23

1239

−67.1

15:20

M

CMEP37

23 Aug

05:47

(−243,−279)

AR

8

622

36.6

8:20

M

CMEH38

24 Aug

01:13

(950,−100)

AR

26

2,066

43.7

3:20

X

CMEH39

05 Sep

16:30

(−400,23)

AR

17

1855

43.0

18:20

M

CMEN40

27 Sep

01:36

(900,−200)

AR

21

1300

−61

3:40

M

CMEN41

27 Sep

13:13

(−650,150)

AR

20

510

−10

18:45

M

CMEN42

06 Nov

05:24

(−49,−280)

AR

16

485

−6.3

11:00

C

CMEH43

09 Nov

12:54

(624,−205)

AR, Fi

26

1977

35.3

15:40

M

CMEH44

24 Nov

19:13

(−750,280)

Fi

20

1179

20.5

23:20

C

Table 12

Characterization of the geoeffectiveness of the events associated with the SSC, classified first by their category at L1 (MC, ICME, Misc., Shock, and CIR/SIR) and then by increasing values of the min(Dst) value. Shown from left to right for the SSCs: No., date, time, amplitude value (A in nT), and amplitude rank (by decreasing amplitude). For the geomagnetic activity: min(Dst) value and geomagnetic-storm intensity (C, S+ means strong for \(\text{min(Dst)}\leq-100\) nT, S means moderate for \(-100<\text{min(Dst)} \leq-50\) nT, and nothing otherwise), max(AE) value, and AE activity intensity characterization (C, S for strong \(\text{max(AE)}>1000\) nT, W for weak \(\text{max(AE)}<350\) nT, nothing otherwise). For the thermosphere neutral density response (A means strong if \(>2\), B means moderate if between 1.5 and 2, and C means weak if \(<1.5\), – means not noticeable, and n/a not available). For the ionosphere, PCP maximum value (S for strong, i.e.\(\text{PCP} \geq 95\) kV, M for moderate, W for weak, i.e.\(\text{PCP} < 75~\text{kV}\)). For the magnetosphere: AKR and NTC (Y for yes, – for no signature, and n/a if not available). Category of event at L1. Solar event: CMEH, CMEN, or CMEP shown as H, N, and P, respectively. Flare class in GOES. Radio signatures marked as y if present or – if absent in the following order: A, B, interaction, type II, type IV.

SSC

Geomag. activity

Th. N.

Iono. PCP max

Magneto.

L1

Solar event

No.

Date

Time [UT]

A [nT]

R

min(Dst) [nT]

min(Dst) C

max(AE) [nT]

max(AE) C

AKR

NTC

Ev. type

\(B_{ \mathrm{z}<0}^{*}\) [nT]

CME

Flare class

Radio leading

SSC28 – SSE28

30 Sep

08:16

16

26

−176

S+

1088

S

A

S

Y

Y

MC

−6.7

N

M

y-  - - -

SSC10 – SSE10

19 Apr

08:34

25

14

−149

S+

1639

S

B

S

Y

Y

MC

−6.8

H,N

M,C

yy-yy

SSC09 – SSE09

17 Apr

11:06

53

3

−127

S+

1356

S

B

M

Y

Y

MC

−7.4

H

M

yy-yy

SSC17

23 May

10:49

78

1

−109

S+

1480

S

A

S

n/a

n/a

MC

−6.6

H,P

C,C

-yyyy

SSC25

18 Aug

18:45

37

8

−106

S+

1095

S

B

S

Y

Y

MC

−3.6

H

M

yy-yy

SSC24

01 Aug

23:10

28

11

−102

S+

1125

S

B

M

Y

Y

MC

−10.1

N,N

./.; C

- - - - -

SSC06

23 Mar

11:35

22

17

−100

S+

1025

S

B

S

Y

Y

MC

−5.7

H,P,H

C,M,./.

yy-yy

SSC01

31 Jan

21:26

13

29

−86

S

570

 

C

S

Y

MC

−7.8

N,H

./.,C

-y- - -

SSC03

28 Feb

04:50

37

7

−71

S

1015

S

C

M

Y

Y

MC

−4.8

N

C

-yyy-

SSC14

18 May

20:08

41

5

−58

S

701

 

B

S

Y

n/a

MC

−3.3

H

C

yy-yy

SSC23

1 Aug

05:10

17

23

−51

S

989

 

C

M

Y

Y

MC

−6.2

N,N

M,M

y- -y-

SSC04

18 Mar

13:21

61

2

−37

 

692

 

B

W

Y

MC

−2.4

H,P

C,M

yy-y-

SSC27

7 Sep

16:36

23

16

−181

S+

1413

S

A

S

Y

Y

ICME

−12.1

H

M

yyyyy

SSC13

11 May

10:13

26

12

−110

S+

1287

S

B

S

Y

Y

ICME

−11.7

H

./.

yy-  -y

SSC15

20 May

03:39

14

28

−36

 

661

 

M

Y

Y

ICME

−1.0

N

C,./.

- - - -  -

SSC21

19 Jul

10:08

19

20

−36

 

972

 

C

S

Y

Y

ICME

−1.7

H,H,P

C,C,X

- -  - - -

SSC20

17 Jul

16:02

40

6

−17

 

503

 

M

Y

Y

ICME

−1.1

H,P

X,M

y- -y-

SSC05

20 Mar

13:27

15

27

−13

 

713

 

M

Y

ICME

−0.4

H,P,P

M,M

yy-y-

SSC32

26 Nov

21:50

25

13

−64

S

990

 

n/a

S

Y

Y

Misc.

−3.3

H

 

- - -y-

SSC11

23 Apr

04:48

43

4

−57

S

1136

S

B

M

Y

Y

Misc.

−2.5

H

X

yy-yy

SSC26

26 Aug

11:30

21

19

−45

 

1166

S

C

M

Y

Y

Misc.

−4.2

H,P

X,M

yy-yy

SSC12

10 May

11:22

29

10

−14

 

886

 

M

Y

Y

Misc.

−1.3

N,H

./.,C

- - -  - -

SSC08

14 Apr

12:34

10

30

−23

 

940

 

S

Y

Y

Shock

−4.4

N?

C

y- -y-

SSC18

30 May

02:04

9

31

−13

 

335

W

W

Y

Y

Shock

−0.9

P

./.

-y-y-

SSC16

21 May

22:02

18

21

−12

 

681

 

M

Y

Shock

−1.2

N

C

y- -y-

SSC22

29 Jul

13:21

25

15

0

 

198

W

W

Shock

−0.3

H

M

y- -y-

SSC07

29 Mar

22:36

31

9

−38

 

780

 

C

M

Y

CIR

−1.2

./.

  

SSC31

11 Nov

12:30

16

25

−32

 

171

W

M

Y

CIR

−1.5

H

M

yy-yy

SSC29-30

9 Nov

51:00

17

32

−28

 

673

 

n/a

M

Y

CIR

−2.0

N?

C

 

SSC02

17 Feb

02:54

21

18

−21

 

331

W

M

Y

Y

SIR

−2.0

./.

  

SSC19

6 Jun

11:39

17

22

−16

 

581

 

C

M

Y

n/a

CIR

−2.6

./.

  
For the 44 CMEs associated with an SSC (as Leading or Contrib.) in Table 2,
  • 18 have their source only in an AR (in one case, EIT detected the accompanying flare), 4 have their source only in a filament, and 22 have their source in an AR and a filament (including one case near a coronal hole (CH)). Thus 91% (\(40/44\)) of the CMEs have their source in an AR (with or without a filament), 60% (\(26/4\)4) in a filament (in or out of an AR).

  • 73% (\(32/44\)) come from the southern hemisphere of the Sun, and 27  % (\(12/44\)) from the northern hemisphere of the Sun.

  • 39% (\(17/44\)) come from the eastern side of the Sun, 61% (\(27/44\)) from the western side of the Sun, which is not surprising.

  • 13.5% (\(6/44\)) have a velocity less than 500 km s−1 (non-halo CME), 43% (\(19/44\)) a velocity ranging from 500 km s−1 to 999 km  s−1, 38.5% (\(17/44\)) a velocity between 1000 km s−1 and 2000 km s−1 (\(10/17\) are halo CME), and 4% (\(2/44\)) a velocity greater than 2000 km s−1 (2 halo CME),

  • 21 CMEs are associated with GOES C-class events, 19 with M-class events, and 4 with X-class events. All but one are linked to an AR. In 2002, around 2000 C-class flares, around 200 M-class flares, and 12 X-class flares were seen by GOES.

Notes

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • K. Bocchialini
    • 1
    Email author
  • B. Grison
    • 2
  • M. Menvielle
    • 3
    • 4
  • A. Chambodut
    • 5
  • N. Cornilleau-Wehrlin
    • 6
    • 7
  • D. Fontaine
    • 7
  • A. Marchaudon
    • 8
    • 9
  • M. Pick
    • 6
  • F. Pitout
    • 8
    • 9
  • B. Schmieder
    • 6
  • S. Régnier
    • 10
  • I. Zouganelis
    • 11
  1. 1.Institut d’Astrophysique Spatiale, Univ. Paris-Sud, CNRSUniversité Paris-SaclayOrsay CEDEXFrance
  2. 2.Institute of Atmospheric Physics CASPrague 4Czech Republic
  3. 3.CNRS, Laboratoire Atmosphères, Milieux, Observations SpatialesUniversité Versailles Saint QuentinGuyancourtFrance
  4. 4.Département des Sciences de la TerreUniv. Paris SudOrsay CEDEXFrance
  5. 5.Institut de Physique du Globe de Strasbourg, UMR7516, CNRSUniversité de Strasbourg/EOSTStrasbourg CEDEXFrance
  6. 6.Observatoire de Paris, LESIAPSL Research UniversityMeudon CEDEXFrance
  7. 7.LPP, CNRS, Ecole Polytechnique, UPMC Univ. Paris 06, Univ. Paris Sud, Observatoire de Paris, Université Paris-Saclay, Sorbonne Universités, PSL Research UniversityEcole PolytechniquePalaiseau CEDEXFrance
  8. 8.Institut de Recherche en Astrophysique et PlanétologieUniversité de ToulouseToulouseFrance
  9. 9.CNRSUMR 5277Toulouse CEDEX 4France
  10. 10.Department of Mathematics, Physics and Electrical EngineeringNorthumbria UniversityNewcastle upon TyneUK
  11. 11.European Space AgencyESACMadridSpain

Personalised recommendations