Advertisement

Solar Physics

, 294:19 | Cite as

Estimating Total Open Heliospheric Magnetic Flux

  • S. WallaceEmail author
  • C. N. Arge
  • M. Pattichis
  • R. A. Hock-Mysliwiec
  • C. J. Henney
Article

Abstract

Over the solar-activity cycle, there are extended periods where significant discrepancies occur between the spacecraft-observed total (unsigned) open magnetic flux and that determined from coronal models. In this article, the total open heliospheric magnetic flux is computed using two different methods and then compared with results obtained from in-situ interplanetary magnetic-field observations. The first method uses two different types of photospheric magnetic-field maps as input to the Wang–Sheeley–Arge (WSA) model: i) traditional Carrington or diachronic maps, and ii) Air Force Data Assimilative Photospheric Flux Transport model synchronic maps. The second method uses observationally derived helium and extreme-ultraviolet coronal-hole maps overlaid on the same magnetic-field maps in order to compute total open magnetic flux. The diachronic and synchronic maps are both constructed using magnetograms from the same source, namely the National Solar Observatory Kitt Peak Vacuum Telescope and Vector Spectromagnetograph. The results of this work show that the total open flux obtained from observationally derived coronal holes agrees remarkably well with that derived from WSA, especially near solar minimum. This suggests that, on average, coronal models capture well the observed large-scale coronal-hole structure over most of the solar cycle. Both methods show considerable deviations from total open flux deduced from spacecraft data, especially near solar maximum, pointing to something other than poorly determined coronal-hole area specification as the source of these discrepancies.

Keywords

Magnetic fields, interplanetary Coronal holes Corona, models 

Notes

Acknowledgments

This work was partially supported by the Air Force Scholars Program. We acknowledge use of NASA/GSFC’s Space Physics Data Facility’s OMNIWeb service and OMNI data. This work utilizes ADAPT maps produced collaboratively between AFRL and NSO/NISP. NSO/Kitt Peak data used here are produced cooperatively by NSF/NSO, NASA/GSFC, and NOAA/SEL. SOLIS data for this work are obtained and managed by NSO/NISP, operated by AURA, Inc. under a cooperative agreement with NSF.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9, 131. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Arden, W.M., Norton, A.A., Sun, X.: 2014, A “breathing” source surface for cycles 23 and 24. J. Geophys. Res. 119, 1476. DOI. ADS. CrossRefGoogle Scholar
  3. Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Arge, C.N., Hildner, E., Pizzo, V.J., Harvey, J.W.: 2002, Two solar cycles of nonincreasing magnetic flux. J. Geophys. Res. 107, 1319. DOI. ADS. CrossRefGoogle Scholar
  5. Arge, C.N., Harvey, K.L., Hudson, H.S., Kahler, S.W.: 2003b, Narrow coronal holes in Yohkoh soft X-ray images and the slow solar wind. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten CS-679, Am. Inst. Phys., Melville, 202. DOI. ADS. CrossRefGoogle Scholar
  6. Arge, C.N., Odstrcil, D., Pizzo, V.J., Mayer, L.R.: 2003a, Improved method for specifying solar wind speed near the Sun. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten CS-679, Am. Inst. Phys., Melville, 190. DOI. ADS. CrossRefGoogle Scholar
  7. Arge, C.N., Luhmann, J.G., Odstrcil, D., Schrijver, C.J., Li, Y.: 2004, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Solar-Terr. Phys. 66, 1295. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Arge, C.N., Henney, C.J., Koller, J., Compeau, C.R., Young, S., MacKenzie, D., Fay, A., Harvey, J.W.: 2010, Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Solar Wind 12 CS-1216, Am. Inst. Phys., Melville, 343. DOI. ADS. CrossRefGoogle Scholar
  9. Arge, C.N., Henney, C.J., Koller, J., Toussaint, W.A., Harvey, J.W., Young, S.: 2011, Improving data drivers for coronal and solar wind models. In: Pogorelov, N.V., Audit, E., Zank, G.P. (eds.) 5th International Conference of Numerical Modeling of Space Plasma Flows, Astronum 2010, CS-444, Astron. Soc. Pacific, San Francisco, 99. ADS. Google Scholar
  10. Arge, C.N., Henney, C.J., Hernandez, I.G., Toussaint, W.A., Koller, J., Godinez, H.C.: 2013, Modeling the corona and solar wind using ADAPT maps that include far-side observations. In: Zank, G.P., Borovsky, J., Bruno, R., Cirtain, J., Cranmer, S., Elliott, H., Giacalone, J., Gonzalez, W., Li, G., Marsch, E., Moebius, E., Pogorelov, N., Spann, J., Verkhoglyadova, O. (eds.) Solar Wind 13 CS-1539, Am. Inst. Phys., Melville, 11. DOI. ADS. CrossRefGoogle Scholar
  11. Boucheron, L.E., Valluri, M., McAteer, R.T.J.: 2016, Segmentation of coronal holes using active contours without edges. Solar Phys. 291, 2353. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Caplan, R.M., Downs, C., Linker, J.A.: 2016, Synchronic coronal hole mapping using multi-instrument EUV images: data preparation and detection method. Astrophys. J. 823, 53. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Cranmer, S.R.: 2009, Coronal holes. Living Rev. Solar Phys. 6, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  14. de Toma, G., Arge, C.N., Riley, P.: 2005, Observed and modeled coronal holes. AGU Spring Meet. Abs., SH24A. ADS.
  15. Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Garton, T.M., Gallagher, P.T., Murray, S.A.: 2018, Automated coronal hole identification via multi-thermal intensity segmentation. J. Space Weather Space Clim. 8, A02. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Hamada, A., Asikainen, T., Virtanen, I., Mursula, K.: 2018, Automated identification of coronal holes from synoptic EUV maps. Solar Phys. 293, 71. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Harvey, J.W.: 2013, The Sun in time. Space Sci. Rev. 176, 47. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Harvey, K.L., Recely, F.: 2002, Polar coronal holes during Cycles 22 and 23. Solar Phys. 211, 31. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Harvey, J.W., Sheeley, N.R. Jr.: 1977, A comparison of He II 304 Å and He I 10,830 Å spectroheliograms. Solar Phys. 54, 343. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Henney, C.J., Harvey, J.W.: 2005, Automated coronal hole detection using He 1083 nm spectroheliograms and photospheric magnetograms. In: Sankarasubramanian, K., Penn, M., Pevtsov, A. (eds.) Large-Scale Structures and Their Role in Solar Activity CS-346, Astron. Soc. Pacific, San Francisco, 261. ADS. Google Scholar
  23. Henney, C.J., Keller, C.U., Harvey, J.W., Georgoulis, M.K., Hadder, N.L., Norton, A.A., Raouafi, N.-E., Toussaint, R.M.: 2009, SOLIS vector spectromagnetograph: status and science. In: Berdyugina, S.V., Nagendra, K.N., Ramelli, R. (eds.) Solar Polarization 5 CS-405, Astron. Soc. Pacific, San Francisco, 47. ADS. Google Scholar
  24. Hickmann, K.S., Godinez, H.C., Henney, C.J., Arge, C.N.: 2015, Data assimilation in the ADAPT photospheric flux transport model. Solar Phys. 290, 1105. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Hoeksema, J.T., Wilcox, J.M., Scherrer, P.H.: 1983, The structure of the heliospheric current sheet – 1978 – 1982. J. Geophys. Res. 88, 9910. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Jones, H.P., Duvall, T.L. Jr., Harvey, J.W., Mahaffey, C.T., Schwitters, J.D., Simmons, J.E.: 1992, The NASA/NSO spectromagnetograph. Solar Phys. 139, 211. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO Mission: an introduction. Space Sci. Rev. 136, 5. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Krista, L.D., Gallagher, P.T.: 2009, Automated coronal hole detection using local intensity thresholding techniques. Solar Phys. 256, 87. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Lee, C.O., Luhmann, J.G., Hoeksema, J.T., Sun, X., Arge, C.N., de Pater, I.: 2011, Coronal field opens at lower height during the solar cycles 22 and 23 minimum periods: IMF comparison suggests the source surface should be lowered. Solar Phys. 269, 367. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Linker, J.A., Mikić, Z., Riley, P., Downs, C., Lionello, R., Henney, C., Arge, C.N.: 2013, Coronal and heliospheric modeling using flux-evolved maps. In: Zank, G.P., Borovsky, J., Bruno, R., Cirtain, J., Cranmer, S., Elliott, H., Giacalone, J., Gonzalez, W., Li, G., Marsch, E., Moebius, E., Pogorelov, N., Spann, J., Verkhoglyadova, O. (eds.) Solar Wind 13 CS-1539, Am. Inst. Phys., Melville, 26. DOI. ADS. CrossRefGoogle Scholar
  33. Linker, J.A., Caplan, R.M., Downs, C., Lionello, R., Riley, P., Mikic, Z., Henney, C.J., Arge, C.N., Kim, T., Pogorelov, N.: 2016, An empirically driven time-dependent model of the solar wind. J. Phys. Conf. Ser. 719, 012012. CrossRefGoogle Scholar
  34. Linker, J.A., Caplan, R.M., Downs, C., Riley, P., Mikic, Z., Lionello, R., Henney, C.J., Arge, C.N., Liu, Y., Derosa, M.L., Yeates, A., Owens, M.J.: 2017, The open flux problem. Astrophys. J. 848, 70. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Lionello, R., Linker, J.A., Mikić, Z.: 2009, Multispectral emission of the Sun during the first whole Sun month: magnetohydrodynamic simulations. Astrophys. J. 690, 902. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Lockwood, M., Owens, M.: 2009, The accuracy of using the Ulysses result of the spatial invariance of the radial heliospheric field to compute the open solar flux. Astrophys. J. 701, 964. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Lockwood, M., Owens, M., Rouillard, A.P.: 2009a, Excess open solar magnetic flux from satellite data: 1. Analysis of the third perihelion Ulysses pass. J. Geophys. Res. 114, A11103. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Lockwood, M., Owens, M., Rouillard, A.P.: 2009b, Excess open solar magnetic flux from satellite data: 2. A survey of kinematic effects. J. Geophys. Res. 114, A11104. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Lockwood, M., Forsyth, R., Balogh, A., McComas, D.: 2004, Open solar flux estimates from near-Earth measurements of the interplanetary magnetic field: comparison of the first two perihelion passes of the Ulysses spacecraft. Ann. Geophys. 22, 1395. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Lowder, C., Qiu, J., Leamon, R.: 2017, Coronal holes and open magnetic flux over Cycles 23 and 24. Solar Phys. 292, 18. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Lowder, C., Qiu, J., Leamon, R., Liu, Y.: 2014, Measurements of EUV coronal holes and open magnetic flux. Astrophys. J. 783, 142. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Owens, M.J., Crooker, N.U.: 2006, Coronal mass ejections and magnetic flux buildup in the heliosphere. J. Geophys. Res. 111, A10104. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Owens, M.J., Crooker, N.U., Lockwood, M.: 2011, How is open solar magnetic flux lost over the solar cycle? J. Geophys. Res. 116, A04111. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Owens, M.J., Schwadron, N.A., Crooker, N.U., Hughes, W.J., Spence, H.E.: 2007, Role of coronal mass ejections in the heliospheric Hale cycle. Geophys. Res. Lett. 34, L06104. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Owens, M.J., Arge, C.N., Crooker, N.U., Schwadron, N.A., Horbury, T.S.: 2008a, Estimating total heliospheric magnetic flux from single-point in situ measurements. J. Geophys. Res. 113, A12103. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Owens, M.J., Spence, H.E., McGregor, S., Hughes, W.J., Quinn, J.M., Arge, C.N., Riley, P., Linker, J., Odstrcil, D.: 2008b, Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations. Space Weather 6, S08001. DOI. ADS. ADSCrossRefGoogle Scholar
  47. Owens, M.J., Lockwood, M., Riley, P., Linker, J.: 2017, Sunward strahl: A method to unambiguously determine open solar flux from in situ spacecraft measurements using suprathermal electron data. J. Geophys. Res. 122, 10. DOI. ADS. CrossRefGoogle Scholar
  48. Pattchis, M.S., Venkatesh, J., Hock, R.A., Henney, C.J., Arge, C.N.: 2014, Detecting coronal holes for solar activity modeling. In: 48th Asilomar Conference on Signals, Systems and Computers, Curran Associates, Red Hook, 89. DOI. CrossRefGoogle Scholar
  49. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  50. Riley, P.: 2007, An alternative interpretation of the relationship between the inferred open solar flux and the interplanetary magnetic field. Astrophys. J. Lett. 667, L97. DOI. ADS. ADSCrossRefGoogle Scholar
  51. Riley, P., Linker, J.A., Mikić, Z., Lionello, R., Ledvina, S.A., Luhmann, J.G.: 2006, A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys. J. 653, 1510. DOI. ADS. ADSCrossRefGoogle Scholar
  52. Riley, P., Ben-Nun, M., Linker, J.A., Mikic, Z., Svalgaard, L., Harvey, J., Bertello, L., Hoeksema, T., Liu, Y., Ulrich, R.: 2014, A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms. Solar Phys. 289, 769. DOI. ADS. ADSCrossRefGoogle Scholar
  53. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442. DOI. ADS. ADSCrossRefGoogle Scholar
  54. Scholl, I.F., Habbal, S.R.: 2008, Automatic detection and classification of coronal holes and filaments based on EUV and magnetogram observations of the solar disk. Solar Phys. 248, 425. DOI. ADS. ADSCrossRefGoogle Scholar
  55. Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. DOI. ADS. ADSCrossRefGoogle Scholar
  56. Smith, E.J., Balogh, A., Forsyth, R.J., McComas, D.J.: 2001, Ulysses in the south polar cap at solar maximum: Heliospheric magnetic field. Geophys. Res. Lett. 28, 4159. DOI. ADS. ADSCrossRefGoogle Scholar
  57. Svalgaard, L.: 2006, Polar fields, large-scale fields, “magnetic memory”, and solar cycle prediction (accessed on 12 July 2018). www.predsci.com/~pete/research/magnetogram-workshops/1st-workshop/presentations/Leif_Svalgaard_SC24Pred_06.pdf.
  58. Svalgaard, L., Duvall, T.L. Jr., Scherrer, P.H.: 1978, The strength of the Sun’s polar fields. Solar Phys. 58, 225. DOI. ADS. ADSCrossRefGoogle Scholar
  59. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Lites, B.W., Matsuzaki, K., Nagata, S., Orozco Suárez, D., Shimizu, T., Shimojo, M., Shine, R.A., Suematsu, Y., Suzuki, T.K., Tarbell, T.D., Title, A.M.: 2008, The magnetic landscape of the Sun’s polar region. Astrophys. J. 688, 1374. DOI. ADS. ADSCrossRefGoogle Scholar
  60. Verbeeck, C., Delouille, V., Mampaey, B., De Visscher, R.: 2014, The SPoCA-suite: Software for extraction, characterization, and tracking of active regions and coronal holes on EUV images. Astron. Astrophys. 561, A29. DOI. ADS. ADSCrossRefGoogle Scholar
  61. Wang, Y.-M., Lean, J., Sheeley, N.R. Jr.: 2000, The long-term variation of the Sun’s open magnetic flux. Geophys. Res. Lett. 27, 505. DOI. ADS. ADSCrossRefGoogle Scholar
  62. Wang, Y.-M., Sheeley, N.R. Jr.: 1992, On potential field models of the solar corona. Astrophys. J. 392, 310. DOI. ADS. ADSCrossRefGoogle Scholar
  63. Wang, Y.-M., Sheeley, N.R. Jr.: 1995, Solar implications of ULYSSES interplanetary field measurements. Astrophys. J. Lett. 447, L143. DOI. ADS. ADSCrossRefGoogle Scholar
  64. Worden, J., Harvey, J.: 2000, An evolving synoptic magnetic flux map and implications for the distribution of photospheric magnetic flux. Solar Phys. 195, 247. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of New MexicoAlbuquerqueUSA
  2. 2.Heliophysics Science DivisionNASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueUSA
  4. 4.Air Force Research Laboratory/Space Vehicles DirectorateKirtland Air Force BaseUSA

Personalised recommendations