Solar Physics

, 294:13 | Cite as

Ion Charge States in a Time-Dependent Wave-Turbulence-Driven Model of the Solar Wind

  • Roberto LionelloEmail author
  • Cooper Downs
  • Jon A. Linker
  • Zoran Mikić
  • John Raymond
  • Chengcai Shen
  • Marco Velli
Part of the following topical collections:
  1. Solar Wind at the Dawn of the Parker Solar Probe and Solar Orbiter Era


Ion fractional charge states, measured in situ in the heliosphere, depend on the properties of the plasma in the inner corona. As the ions travel outward in the solar wind and the electron density drops, the charge states remain essentially unaltered or “frozen in”. Thus they can provide a powerful constraint on heating models of the corona and acceleration of the solar wind. We have implemented non-equilibrium ionization calculations into a 1D wave-turbulence-driven (WTD) hydrodynamic solar wind model and compared modeled charge states with the Ulysses 1994 – 1995 in situ measurements. We have found that modeled charge-state ratios of \(\mbox{C}^{6+}/\mbox{C}^{5+}\) and \(\mbox{O}^{7+}/\mbox{O}^{6+}\), among others, were too low compared with Ulysses measurements. However, a heuristic reduction of the plasma flow speed has been able to bring the modeled results in line with observations, though other ideas have been proposed to address this discrepancy. We discuss implications of our results and the prospect of including ion charge-state calculations into our 3D MHD model of the inner heliosphere.


Solar wind Fractional charge states 



R. Lionello is grateful to Drs. Susanna Parenti and Alessandro Bemporad for providing helpful advice. We also thank the referee for constructive criticism. R. Lionello was funded through NASA Grant NNH14CK98C.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Abbo, L., Ofman, L., Antiochos, S.K., Hansteen, V.H., Harra, L., Ko, Y.-K., Lapenta, G., Li, B., Riley, P., Strachan, L., von Steiger, R., Wang, Y.-M.: 2016, Slow solar wind: Observations and modeling. Space Sci. Rev. 201, 55. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Athay, R.G.: 1986, Radiation loss rates in Lyman-alpha for solar conditions. Astrophys. J. 308, 975. ADS. ADSCrossRefGoogle Scholar
  3. Banaszkiewicz, M., Axford, W.I., McKenzie, J.F.: 1998, An analytic solar magnetic field model. Astron. Astrophys. 337, 940. ADS. ADSGoogle Scholar
  4. Bochsler, P.: 2002, Abundances and charge states of particles in the solar wind. Rev. Geophys. 38(2), 247. DOI. ADSCrossRefGoogle Scholar
  5. Buergi, A., Geiss, J.: 1986, Helium and minor ions in the corona and solar wind – Dynamics and charge states. Solar Phys. 103, 347. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Byhring, H.S., Cranmer, S.R., Lie-Svendsen, Ø., Habbal, S.R., Esser, R.: 2011, Modeling iron abundance enhancements in the slow solar wind. Astrophys. J. 732, 119. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Chen, Y., Esser, R., Hu, Y.: 2003, Formation of minor-ion charge states in the fast solar wind: Roles of differential flow speeds of ions of the same element. Astrophys. J. 582, 467. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Cranmer, S.R.: 2002, Coronal holes and the high-speed solar wind. Space Sci. Rev. 101, 229. ADS. ADSCrossRefGoogle Scholar
  9. Cranmer, S.R.: 2009, Coronal holes. Living Rev. Solar Phys. 6, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Cranmer, S.R.: 2014, Suprathermal electrons in the solar corona: Can nonlocal transport explain heliospheric charge states? Astrophys. J. Lett. 791, L31. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Cranmer, S.R., van Ballegooijen, A.A., Edgar, R.J.: 2007, Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. 171, 520. DOI. ADS. ADSCrossRefGoogle Scholar
  12. de Karman, T., Howarth, L.: 1938, On the Statistical Theory of Isotropic Turbulence. Royal Society of London Proceedings Series A 164, 192. DOI. ADS. CrossRefzbMATHGoogle Scholar
  13. Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, CHIANTI – An atomic database for emission lines. Astron. Astrophys. Suppl. 125, 149. ADS. ADSCrossRefGoogle Scholar
  14. Dmitruk, P., Milano, L.J., Matthaeus, W.H.: 2001, Wave-driven turbulent coronal heating in open field line regions: Nonlinear phenomenological model. Astrophys. J. 548, 482. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Esser, R., Edgar, R.J., Brickhouse, N.S.: 1998, High minor ion outflow speeds in the inner corona and observed ion charge states in interplanetary space. Astrophys. J. 498, 448. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Hollweg, J.V.: 1978, Some physical processes in the solar wind. Rev. Geophys. Space Phys. 16, 689. ADS. ADSCrossRefGoogle Scholar
  17. Ko, Y.-K., Geiss, J., Gloeckler, G.: 1998, On the differential ion velocity in the inner solar corona and the observed solar wind ionic charge states. J. Geophys. Res. 103, 14539. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Ko, Y.-K., Fisk, L.A., Gloeckler, G., Geiss, J.: 1996, Limitations on suprathermal tails of electrons in the lower solar corona. Geophys. Res. Lett. 23, 2785. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Ko, Y.-K., Gloeckler, G., Cohen, C.M.S., Galvin, A.B.: 1999, Solar wind ionic charge states during the Ulysses pole-to-pole pass. J. Geophys. Res. 104, 17005. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Landi, E., Lepri, S.T.: 2015, Photoionization in the solar wind. Astrophys. J. Lett. 812, L28. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Landi, E., Young, P.R., Dere, K.P., Del Zanna, G., Mason, H.E.: 2013, CHIANTI – An atomic database for emission lines. XIII. Soft X-ray improvements and other changes. Astrophys. J. 763, 86. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Landi, E., Oran, R., Lepri, S.T., Zurbuchen, T.H., Fisk, L.A., van der Holst, B.: 2014, Charge state evolution in the solar wind. III. Model comparison with observations. Astrophys. J. 790, 111. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Lionello, R., Velli, M., Downs, C., Linker, J.A., Mikić, Z.: 2014a, Application of a solar wind model driven by turbulence dissipation to a 2D magnetic field configuration. Astrophys. J. 796, 111. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Lionello, R., Velli, M., Downs, C., Linker, J.A., Mikić, Z., Verdini, A.: 2014b, Validating a time-dependent turbulence-driven model of the solar wind. Astrophys. J. 784, 120. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Matthaeus, W.H., Minnie, J., Breech, B., Parhi, S., Bieber, J.W., Oughton, S.: 2004, Transport of cross helicity and radial evolution of Alfvénicity in the solar wind. Geophys. Res. Lett. 31, 12803. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Mikić, Z., Linker, J.A., Schnack, D.D., Lionello, R., Tarditi, A.: 1999, Magnetohydrodynamic modeling of the global solar corona. Phys. Plasmas 6, 2217. ADS. ADSCrossRefGoogle Scholar
  27. Mikić, Z., Downs, C., Linker, J.A., Caplan, R.M., Mackay, D.H., Upton, L.A., Riley, P., Lionello, R., Török, T., Titov, V.S., Wijaya, J., Druckmüller, M., Pasachoff, J.M., Carlos, W.: 2018, Predicting the corona for the 21 August 2017 total solar eclipse. Nat. Astron. DOI. ADS. CrossRefGoogle Scholar
  28. Ofman, L., Abbo, L., Giordano, S.: 2013, Observations and models of slow solar wind with \(\mbox{Mg}^{9 +}\) ions in quiescent streamers. Astrophys. J. 762, 18. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Oran, R., Landi, E., van der Holst, B., Lepri, S.T., Vásquez, A.M., Nuevo, F.A., Frazin, R., Manchester, W., Sokolov, I., Gombosi, T.I.: 2015, A steady-state picture of solar wind acceleration and charge state composition derived from a global wave-driven MHD model. Astrophys. J. 806, 55. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Shen, C., Raymond, J.C., Murphy, N.A., Lin, J.: 2015, A Lagrangian scheme for time-dependent ionization in simulations of astrophysical plasmas. Astron. Comput. 12, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Usmanov, A.V., Goldstein, M.L., Matthaeus, W.H.: 2012, Three-dimensional magnetohydrodynamic modeling of the solar wind including pickup protons and turbulence transport. Astrophys. J. 754, 40. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Usmanov, A.V., Matthaeus, W.H., Breech, B.A., Goldstein, M.L.: 2011, Solar wind modeling with turbulence transport and heating. Astrophys. J. 727, 84. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Verdini, A., Velli, M., Matthaeus, W.H., Oughton, S., Dmitruk, P.: 2010, A turbulence-driven model for heating and acceleration of the fast wind in coronal holes. Astrophys. J. Lett. 708, L116. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Zurbuchen, T.H., Fisk, L.A., Gloeckler, G., von Steiger, R.: 2002, The solar wind composition throughout the solar cycle: A continuum of dynamic states. Geophys. Res. Lett. 29, 1352. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Predictive Science Inc.San DiegoUSA
  2. 2.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  3. 3.Earth, Planetary, and Space Sciences, UCLALos AngelesUSA

Personalised recommendations