Advertisement

Solar Physics

, 294:9 | Cite as

Characteristics of SEP Events and Their Solar Origin During the Evolution of Active Region NOAA 10069

  • L. K. KashapovaEmail author
  • R. Miteva
  • I. N. Myagkova
  • A. V. Bogomolov
Article

Abstract

We present the results of a comparative analysis of the properties of a series of successive solar flares, which occurred in active region (AR) 10069 in August 2002, and the associated solar energetic particle (SEP) events. The active region was extremely flare productive during its evolution. The solar flare characteristics are based on X-ray and radio emission data: maximum detected photon energies and spectral index, delays between microwave, metric-radio and, hard X-ray emissions. The coronal mass ejections (CMEs) are characterized by their projected speed. The SEP properties are described by the relative electron to proton abundance as well as by the abundance of lower relative to higher energy particles. The analysis carried out supports some previous results obtained by large statistical studies, but at the same time refutes others. For example, the set of analyzed events that occurred in the AR did not show clear evidence of the big flare syndrome though the large proton events observed near Earth were always accompanied by CMEs. Some of the peculiar observations could be the result of the magnetic topology of the AR.

Keywords

Solar energetic particles Coronal mass ejections Flares X-ray emission Microwaves and radio emission 

Notes

Acknowledgements

This study is supported by the project ‘The origin on solar energetic particles: solar flares vs. coronal mass ejections’, co-funded by the Russian Foundation for Basic Research with project No. 17-52-18050 and the National Science Fund of Bulgaria under contract No. DNTS/Russia 01/6 (23-Jun-2017). We thank the GOES, ACE, RHESSI and RSTN teams for open access to their data. Authors are thankful to an unknown referee for the detailed reviews and the comments which helped to improve the paper. We thank the team maintaining the CME Catalog at the CDAW Data Center by NASA and the Catholic University of America in cooperation with the Naval Research Laboratory. We are thankful to the SONG team for the data. LKK thanks the budgetary funding of Basic Research program II.16.

Disclosure of Potential Conflicts of Interest

The authors claim that they have no conflicts of interest.

References

  1. Aschwanden, M.J., Caspi, A., Cohen, C.M.S., Holman, G., Jing, J., Kretzschmar, M., Kontar, E.P., McTiernan, J.M., Mewaldt, R.A., O’Flannagain, A., Richardson, I.G., Ryan, D., Warren, H.P., Xu, Y.: 2017, Global energetics of solar flares. V. Energy closure in flares and coronal mass ejections. Astrophys. J. 836, 17. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Bastian, T.S., Benz, A.O., Gary, D.E.: 1998, Radio emission from solar flares. Annu. Rev. Astron. Astrophys. 36, 131. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Bogomolov, A.V., Kashapova, L.K., Myagkova, I.N., Tsap, Y.T.: 2014, Dynamics of the hard X-ray, gamma-ray, and microwave emission of solar flares produced by the active region NOAA 0069 in August 2002. Astron. Rep. 58, 156. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Bronarska, K., Michalek, G.: 2017, Characteristics of active regions associated to large solar energetic proton events. Adv. Space Res. 59, 384. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Cane, H.V., Erickson, W.C., Prestage, N.P.: 2002, Solar flares, type III radio bursts, coronal mass ejections, and energetic particles. J. Geophys. Res. 107, 1315. DOI. ADS. CrossRefGoogle Scholar
  6. Cane, H.V., Richardson, I.G., von Rosenvinge, T.T.: 2010, A study of solar energetic particle events of 1997 – 2006: Their composition and associations. J. Geophys. Res. 115, A08101. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Daibog, E.I., Melnikov, V.F., Stolpovskii, V.G.: 1993, Solar energetic particle events from solar flares with weak impulsive phases of microwave emission. Solar Phys. 144, 361. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Daibog, E.I., Stolpovskii, V.G., Melnikov, V.F., Podstrigach, T.S.: 1989, Microwave bursts and relative concentration of electrons and protons in solar flare cosmic rays. Pism’a Astron. ž. 15, 991. ADS. ADSGoogle Scholar
  9. Desai, M., Giacalone, J.: 2016, Large gradual solar energetic particle events. Living Rev. Solar Phys. 13, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Dierckxsens, M., Tziotziou, K., Dalla, S., Patsou, I., Marsh, M.S., Crosby, N.B., Malandraki, O., Tsiropoula, G.: 2015, Relationship between solar energetic particles and properties of flares and CMEs: Statistical analysis of solar cycle 23 events. Solar Phys. 290, 841. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Dulk, G.A.: 1985, Radio emission from the Sun and stars. Annu. Rev. Astron. Astrophys. 23, 169. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q., Gallagher, P., Grigis, P.T., Ji, H., Liu, W., Milligan, R.O., Temmer, M.: 2011, An observational overview of solar flares. Space Sci. Rev. 159, 19. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Gopalswamy, N., Yashiro, S., Akiyama, S., Mäkelä, P., Xie, H., Kaiser, M.L., Howard, R.A., Bougeret, J.L.: 2008, Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era. Ann. Geophys. 26, 3033. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Kahler, S.W.: 1982, The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters. J. Geophys. Res. 87, 3439. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Kennewell, J.A., Cornelius, D.W.: 1983, Learmonth solar observatory. Ann. UMCS, Sect. AAA Phys. 20, 276. ADS. ADSGoogle Scholar
  16. Kouloumvakos, A., Nindos, A., Valtonen, E., Alissandrakis, C.E., Malandraki, O., Tsitsipis, P., Kontogeorgos, A., Moussas, X., Hillaris, A.: 2015, Properties of solar energetic particle events inferred from their associated radio emission. Astron. Astrophys. 580, A80. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Kuznetsov, S.N., Bogomolov, A.V., Galkin, V.I., Denisov, Y.I., Podorolsky, A.N., Ryumin, S.P., Kudela, K., Rojko, J.: 2014, Scientific set of instruments “solar cosmic rays”. In: Kuznetsov, V. (ed.) The Coronas-F Space Mission, Astrophys. Space Sci. Lib. 400, 289. DOI. ADS. CrossRefGoogle Scholar
  18. Lin, R.P.: 2011, Energy release and particle acceleration in flares: Summary and future prospects. Space Sci. Rev. 159, 421. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  20. McIntosh, P.S.: 1990, The classification of sunspot groups. Solar Phys. 125, 251. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Miteva, R., Samwel, S.W., Krupar, V.: 2017, Solar energetic particles and radio burst emission. J. Space Weather Space Clim. 7, A37. DOI. ADS. (15 pp.) ADSCrossRefGoogle Scholar
  22. Miteva, R., Klein, K.-L., Malandraki, O., Dorrian, G.: 2013a, Solar energetic particle events in the 23rd solar cycle: Interplanetary magnetic field configuration and statistical relationship with flares and CMEs. Solar Phys. 282, 579. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Miteva, R., Klein, K.-L., Samwel, S.W., Nindos, A., Kouloumvakos, A., Reid, H.: 2013b, Radio signatures of solar energetic particles during the 23rd solar cycle. Cent. Eur. Astrophys. Bull. 37, 541. ADS. ADSGoogle Scholar
  24. Myagkova, I.N., Kuznetsov, S.N., Kurt, V.G., Yuskov, B.Y., Galkin, V.I., Muravieva, E.A., Kudela, K.: 2007, X-ray, \(\gamma\)-emission and energetic particles in near-Earth space as measured by CORONAS-F satellite: From maximum to minimum of the last solar cycle. Adv. Space Res. 40, 1929. DOI. ADS. ADSCrossRefGoogle Scholar
  25. O’Flannagain, A.M., Gallagher, P.T., Brown, J.C., Milligan, R.O., Holman, G.D.: 2013, Solar flare X-ray source motion as a response to electron spectral hardening. Astron. Astrophys. 555, A21. DOI. ADSCrossRefGoogle Scholar
  26. Onsager, T., Grubb, R., Kunches, J., Matheson, L., Speich, D., Zwickl, R.W., Sauer, H.: 1996, Operational uses of the GOES energetic particle detectors. In: Washwell, E.R. (ed.) GOES-8 and Beyond, Proceedings of the SPIE 2812, 281. DOI. ADS. CrossRefGoogle Scholar
  27. Papaioannou, A., Sandberg, I., Anastasiadis, A., Kouloumvakos, A., Georgoulis, M.K., Tziotziou, K., Tsiropoula, G., Jiggens, P., Hilgers, A.: 2016, Solar flares, coronal mass ejections and solar energetic particle event characteristics. J. Space Weather Space Clim. 6(27), A42. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Pariat, E., Leake, J.E., Valori, G., Linton, M.G., Zuccarello, F.P., Dalmasse, K.: 2017, Relative magnetic helicity as a diagnostic of solar eruptivity. Astron. Astrophys. 601, A125. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Reames, D.V.: 1999, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Reames, D.V.: 2015, What are the sources of solar energetic particles? Element abundances and source plasma temperatures. Space Sci. Rev. 194, 303. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Reid, H.A.S., Ratcliffe, H.: 2014, A review of solar type III radio bursts. Res. Astron. Astrophys. 14, 773. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Salas-Matamoros, C., Klein, K.-L.: 2015, On the statistical relationship between CME speed and soft X-ray flux and fluence of the associated flare. Solar Phys. 290, 1337. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The advanced composition explorer. Space Sci. Rev. 86, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Thalmann, J.K., Su, Y., Temmer, M., Veronig, A.M.: 2015, The confined X-class flares of solar active region 2192. Astrophys. J. Lett. 801, L23. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Trottet, G., Samwel, S., Klein, K.-L., Dudok de Wit, T., Miteva, R.: 2015, Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Solar Phys. 290, 819. DOI. ADS. ADSCrossRefGoogle Scholar
  36. White, S.M., Benz, A.O., Christe, S., Fárník, F., Kundu, M.R., Mann, G., Ning, Z., Raulin, J.-P., Silva-Válio, A.V.R., Saint-Hilaire, P., Vilmer, N., Warmuth, A.: 2011, The relationship between solar radio and hard X-ray emission. Space Sci. Rev. 159, 225. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Zhang, H.: 2001, Formation of current helicity and emerging magnetic flux in solar active regions. Mon. Not. Roy. Astron. Soc. 326, 57. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Solar-Terrestrial PhysicsSB Russian Academy of SciencesIrkutskRussia
  2. 2.Space Research and Technology InstituteBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations