Solar Physics

, 294:17 | Cite as

Unexpected Behavior of the Solar Wind Mass Flux During Solar Maxima: Two Peaks at Middle Heliolatitudes

  • Olga KatushkinaEmail author
  • Vladislav Izmodenov
  • Dimitra Koutroumpa
  • Eric Quémerais
  • Lan K. Jian
Part of the following topical collections:
  1. Solar Wind at the Dawn of the Parker Solar Probe and Solar Orbiter Era


In this work we study the temporal and latitudinal variations of the solar wind mass flux at 1 AU derived from SOHO/SWAN data on backscattered solar Lyman-\(\alpha \) radiation in 1996 – 2018. Previously Katushkina et al. (J. Geophys. Res.118, 2800, 2013) have shown that the latitudinal profiles of the solar wind mass flux during the solar maximum 2001 – 2003 have two separate peaks at middle heliolatitudes. In this work we provide the data for the last solar maximum in 2014 – 2016 and show that the specific latitudinal distribution appears again. However, in 2014 – 2016 the two peaks are less separated and sometimes merged to one peak. For several years we have performed a comparison of SWAN observations with the results of the WSA-Enlil model, which is a coupled 3D time-dependent model of the solar wind propagation from the solar corona to the heliosphere. It is shown that the WSA-Enlil model confirms qualitatively the latitudinal distribution of the solar wind found from the SWAN data, although there are some quantitative differences. Physical reasons for the formation of this latitudinal structure at the solar maxima are discussed. Further investigation is needed and could provide new links between the solar corona and the heliospheric environment.


Solar cycle, observations Solar wind, disturbances 



Numerical modeling of the backscattered Lyman-\(\alpha \) intensity maps is supported by Russian Foundation for Basic Research (RFBR) (grant 16-52-16008-CNRS-a). Calculations of the interstellar hydrogen distribution in the heliosphere is carried out by the research Program (“Goszadanie”) “Plasma” of Space Research Institute Russian Academy of Sciences. Analysis of the solar wind mass flux is supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”.

SOHO is a mission of international cooperation between ESA and NASA. SWAN activities in France are funded by CNES through the SHM program. The SWAN inversion simulations were performed at the HPCaVe at UPMC-Sorbonne Université.

LKJ is supported by NASA’s Living with a Star program. WSA-Enlil simulation results have been provided by the CCMC at NASA/GSFC through their public Runs on Request system. The WSA-Enlil model was developed by Nick Arge and Dusan Odstrcil. We thank Dusan Odstrcil, Peter MacNeice and Leila Mays for helpful discussion and anonymous reviewer for very useful suggestions that helped to improve this paper.

VI and LKJ are grateful for the support from the International Space Science Institute in Bern in the framework of the team “The Physics of the Very Local Interstellar Medium”.

Disclosure of potential conflicts of interest

The authors declare that they have no conflicts of interest.


  1. Arge, C.N., Pizzo, V.J.: 2000, J. Geophys. Res. 105, 10465. DOI. ADSCrossRefGoogle Scholar
  2. Arge, C.N., Odstrcil, D., Pizzo, V.J., Mayer, L.R.: 2003, Solar Wind Ten 679, 190. DOI. CrossRefGoogle Scholar
  3. Bemporad, A.: 2017, Astrophys. J. 846, 86. DOI. ADSCrossRefGoogle Scholar
  4. Bertaux, J.L., Kyrölä, E., Quémerais, E., Pellinen, R., Lallement, R., Schmidt, W., Berthé, M., Dimarellis, E., Goutail, J.P., Taulemesse, C., Bernard, C., Leppelmeier, G., Summanen, T., Hannula, H., Huomo, H., Kehlä, V., Korpela, S., Leppälä, K., Strömmer, E., Torsti, J., Viherkanto, K., Hochedez, J.F., Chretiennot, G., Peyroux, R., Holzer, T. (eds.): 1995, Solar Phys. 162, 403. DOI. ADSCrossRefGoogle Scholar
  5. Bruno, R., Villante, U., Bavassano, B., Schwenn, R., Mariani, F.: 1986, Solar Phys. 104, 431. DOI. ADSCrossRefGoogle Scholar
  6. Ebert, R.W., McComas, D.J., Elliott, H.A., Forsyth, R.J., Gosling, J.T.: 2009, J. Geophys. Res. 114, A01109. DOI. ADSCrossRefGoogle Scholar
  7. Gringauz, K.I., Bezrokikh, V.V., Ozerov, V.D., Rybchinskii, R.E.: 1960, Sov. Phys. Dokl. 5, 361. ADS. ADSGoogle Scholar
  8. Hundhausen, A.J., Bame, S.J., Asbridge, J.R., Sydoriak, S.J.: 1970, J. Geophys. Res. 75, 4643. DOI. ADSCrossRefGoogle Scholar
  9. Izmodenov, V.V., Alexashov, D.B.: 2015, Astrophys. J. Suppl. Ser. 220, 32. DOI. ADSCrossRefGoogle Scholar
  10. Izmodenov, V.V., Katushkina, O.A., Quémerais, E., Bzowski, M.: 2013, Cross-Calibration of Far UV Spectra of Solar System Objects and the Heliosphere 7. DOI. CrossRefGoogle Scholar
  11. Jian, L.K., MacNeice, P., Taktakishvili, A., Odstrcil, D., Jackson, B., Yu, H.-S., Riley, P., Sokolov, I.: 2015, Space Weather 13, 316. DOI. ADSCrossRefGoogle Scholar
  12. Jian, L.K., MacNeice, P., Mays, M.L., Taktakishvili, A., Odstrcil, D., Jackson, B., Yu, H.-S., Riley, P., Sokolov, I.: 2016, Space Weather 14, 592. DOI. ADSCrossRefGoogle Scholar
  13. Joselyn, J.A., Holzer, T.E.: 1975, J. Geophys. Res. 80, 903. DOI. ADSCrossRefGoogle Scholar
  14. Katushkina, O.A., Izmodenov, V.V., Quemerais, E., Sokół, J.M.: 2013, J. Geophys. Res. 118, 2800. DOI. CrossRefGoogle Scholar
  15. Katushkina, O.A., Izmodenov, V.V., Alexashov, D.B., Schwadron, N.A., McComas, D.J.: 2015, Astrophys. J. Suppl. Ser. 220, 33. DOI. ADSCrossRefGoogle Scholar
  16. King, J.H., Papitashvili, N.E.: 2005, J. Geophys. Res. 110, A02104. DOI. ADSCrossRefGoogle Scholar
  17. Kramar, M., Jones, S., Davila, J., Inhester, B., Mierla, M.: 2009, Solar Phys. 259, 109. DOI. ADSCrossRefGoogle Scholar
  18. Kramar, M., Airapetian, V., Lin, H.: 2016, Front. Astron. Space Sci. 3, 25. DOI. ADSCrossRefGoogle Scholar
  19. Lallement, R., Bertaux, J.L., Kurt, V.G.: 1985a, J. Geophys. Res. 90, 1413. DOI. ADSCrossRefGoogle Scholar
  20. Lallement, R., Bertaux, J.L., Dalaudier, F.: 1985b, Astron. Astrophys. 150, 21. ADS. ADSGoogle Scholar
  21. Lallement, R., Quémerais, E., Koutroumpa, D., Bertaux, J.-L., Ferron, S., Schmidt, W., Lamy, P.: 2010, Twelfth International Solar Wind Conference 1216, 555. DOI. ADSCrossRefGoogle Scholar
  22. Lamy, P., Barlyaeva, T., Llebaria, A., Floyd, O.: 2014, J. Geophys. Res. 119, 47. DOI. CrossRefGoogle Scholar
  23. Lamy, P., Floyd, O., Quémerais, E., Boclet, B., Ferron, S.: 2017, J. Geophys. Res. 122, 50. DOI. CrossRefGoogle Scholar
  24. Le Chat, G., Issautier, K., Meyer-Vernet, N.: 2012, Solar Phys. 279, 197. DOI. ADSCrossRefGoogle Scholar
  25. Lindsay, B.G., Stebbings, R.F.: 2005, J. Geophys. Res. 110, A12213. DOI. ADSCrossRefGoogle Scholar
  26. Lowder, C., Qiu, J., Leamon, R.: 2017, Solar Phys. 292, 18. DOI. ADSCrossRefGoogle Scholar
  27. McComas, D.J., Barraclough, B.L., Funsten, H.O., Gosling, J.T., Santiago-Muñoz, E., Skoug, R.M., Goldstein, B.E., Neugebauer, M., Riley, P., Balogh, A.: 2000, J. Geophys. Res. 105, 10419. DOI. ADSCrossRefGoogle Scholar
  28. McComas, D.J., Elliott, H.A., Gosling, J.T., Reisenfeld, D.B., Skoug, R.M., Goldstein, B.E., Neugebauer, M., Balogh, A.: 2002, Geophys. Res. Lett. 29, 1290. DOI. ADSCrossRefGoogle Scholar
  29. McComas, D.J.: 2003, Solar Wind Ten 679, 33. DOI. ADSCrossRefGoogle Scholar
  30. McComas, D.J., Elliott, H.A., Gosling, J.T., Skoug, R.M.: 2006, Geophys. Res. Lett. 33, L09102. DOI. ADSCrossRefGoogle Scholar
  31. McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug, R.M.: 2008, Geophys. Res. Lett. 35, L18103. DOI. ADSCrossRefGoogle Scholar
  32. McComas, D.J., Angold, N., Elliott, H.A., Livadiotis, G., Schwadron, N.A., Skoug, R.M., Smith, C.W.: 2013, Astrophys. J. 779, 2. DOI. ADSCrossRefGoogle Scholar
  33. McIntosh, S.W., Leamon, R.J., Krista, L.D., Title, A.M., Hudson, H.S., Riley, P., Harder, J.W., Kopp, G., Snow, M., Woods, T.N., Kasper, J.C., Stevens, M.L., Ulrich, R.K.: 2015, Nat. Commun. 6, 6491. DOI. CrossRefGoogle Scholar
  34. Meier, R.R.: 1977, Astron. Astrophys. 55, 211. ADS. ADSGoogle Scholar
  35. Neugebauer, M., Snyder, C.W.: 1962, Science 138, 1095. DOI. ADSCrossRefGoogle Scholar
  36. Neugebauer, M., Snyder, C.W.: 1966, J. Geophys. Res. 71, 4469. DOI. ADSCrossRefGoogle Scholar
  37. Odstrcil, D.: 2003, Adv. Space Res. 32, 497. DOI. ADSCrossRefGoogle Scholar
  38. Parker, E.N.: 1958, Astrophys. J. 128, 664. DOI. ADSCrossRefGoogle Scholar
  39. Pizzo, V., Millward, G., Parsons, A., Biesecker, D., Hill, S., Odstrcil, D.: 2011, Space Weather 9, S03004. DOI. ADSCrossRefGoogle Scholar
  40. Quémerais, E., Izmodenov, V.: 2002, Astron. Astrophys. 396, 269. DOI. ADSCrossRefGoogle Scholar
  41. Quémerais, E., Lamy, P.: 2002, Astron. Astrophys. 393, 295. DOI. ADSCrossRefGoogle Scholar
  42. Quémerais, E., Lallement, R., Ferron, S., Koutroumpa, D., Bertaux, J.-L., KyröLä, E., Schmidt, W.: 2006, J. Geophys. Res. 111, A09114. DOI. ADSCrossRefGoogle Scholar
  43. Schwenn, R.: 2006, Space Sci. Rev. 124, 51. DOI. ADSCrossRefGoogle Scholar
  44. Steinitz, R.: 1983, Solar Phys. 83, 379. DOI. ADSCrossRefGoogle Scholar
  45. Steinitz, R., Eyni, M.: 1980, Astrophys. J. 241, 417. DOI. ADSCrossRefGoogle Scholar
  46. Tokumaru, M., Kojima, M., Fujiki, K.: 2012, J. Geophys. Res. 117, A06108. DOI. ADSCrossRefGoogle Scholar
  47. Wu, F.M., Judge, D.L.: 1979, Astrophys. J. 231, 594. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Space Research Institute of Russian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Ishlinsky Institute for Problems in Mechanics of Russian Academy of SciencesMoscowRussia
  4. 4.Université Versailles Saint-Quentin, LATMOSGuyancourtFrance
  5. 5.Heliophysics Science DivisionNASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations