Advertisement

Solar Physics

, 293:166 | Cite as

Physical Processes Involved in the EUV “Surge” Event of 9 May 2012

  • Marcelo López FuentesEmail author
  • Cristina H. Mandrini
  • Mariano Poisson
  • Pascal Démoulin
  • Germán Cristiani
  • Fernando M. López
  • Maria Luisa Luoni
Article

Abstract

We study an extreme ultraviolet (EUV) confined ejection observed on 9 May 2012 in Active Region (AR) NOAA 11476. For the analysis we use observations in multiple wavelengths (EUV, X-rays, H\(\upalpha\), and magnetograms) from a variety of ground- and space-based instruments. The magnetic configuration showed two rotating bipoles within the following polarity of the AR. This evolution was present some tens of hours before the studied event and continued thereafter. During this period, the magnetic flux of both bipoles continuously decreased. A mini-filament with a length of \({\approx}\,30''\) lay along the photospheric inversion line of the largest bipole. The mini-filament was observed to erupt, accompanied by an M4.7 flare (SOL20120509T12:23:00). This injected dense material as well as twist along closed loops in the form of a very broad ejection whose morphology resembled that of typical H\(\upalpha\) surges. We conclude that the flare and eruption can be explained as due to two reconnection processes, one occurring below the erupting mini-filament, and another above it. This second process injects the mini-filament plasma within the reconnected closed loops linking the main AR polarities. By analyzing the magnetic topology using a force-free model of the coronal field, we identify the location of quasi-separatix layers, where reconnection is prone to occur, and present a detailed interpretation of the chromospheric and coronal eruption observations. In particular, this event, in contrast to what has been proposed in several models explaining surges and/or jets, is not produced by magnetic flux emergence, but by magnetic flux cancellation accompanied by the rotation of the bipoles. In fact, the conjunction of these two processes, flux cancellation and bipole rotations, is at the origin of a series of events, homologous to the event we analyze in this article, which occurred in AR 11476 from 8 to 10 May 2012.

Keywords

Active Regions, Models Flares, Relation to Magnetic Field Magnetic Reconnection, Observational Signatures Surges Jets 

Notes

Acknowledgements

The authors are grateful for the insightful referee, who stimulated us to improve several parts of the manuscript. The authors would like to thank Carlos Francile from the Astronomical Observatory Felix Aguilar, University of San Juan, for his invaluable help in the processing of HASTA data. MLF, CHM and GC are members of the Carrera del Investigador Científico of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) of Argentina. MP and FL are CONICET Fellows. MP, MLF, GC and CHM acknowledge financial support from the Argentinean grants PICT 2012-0973 (ANPCyT), UBACyT 20020130100321 and PIP 2012-01-403 (CONICET).

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11207_2018_1384_MOESM1_ESM.mp4 (373 kb)
(MP4 373 kB)
11207_2018_1384_MOESM2_ESM.mp4 (1.4 mb)
(MP4 1.4 MB)
11207_2018_1384_MOESM3_ESM.mp4 (1.3 mb)
(MP4 1.3 MB)
11207_2018_1384_MOESM4_ESM.mp4 (1.2 mb)
(MP4 1.2 MB)
11207_2018_1384_MOESM5_ESM.mp4 (2 mb)
(MP4 2.0 MB)
11207_2018_1384_MOESM6_ESM.mp4 (2.6 mb)
(MP4 2.6 MB)
11207_2018_1384_MOESM7_ESM.mp4 (1.7 mb)
(MP4 1.7 MB)
11207_2018_1384_MOESM8_ESM.mp4 (97 kb)
(MP4 97 kB)
11207_2018_1384_MOESM9_ESM.mp4 (1.4 mb)
(MP4 1.4 MB)

References

  1. Adams, M., Sterling, A.C., Moore, R.L., Gary, G.A.: 2014, A small-scale eruption leading to a blowout macrospicule jet in an on-disk coronal hole. Astrophys. J. 783, 11. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Alissandrakis, C.E.: 1981, On the computation of constant alpha force-free magnetic field. Astron. Astrophys. 100, 197. ADS. ADSGoogle Scholar
  3. Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Aulanier, G., Pariat, E., Démoulin, P.: 2005, Current sheet formation in quasi-separatrix layers and hyperbolic flux tubes. Astron. Astrophys. 444, 961. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Aulanier, G., Török, T., Démoulin, P., DeLuca, E.E.: 2010, Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys. J. 708, 314. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Bagalá, L.G., Bauer, O.H., Fernández Borda, R., Francile, C., Haerendel, G., Rieger, R., Rovira, M.G.: 1999, The new H\(\alpha\) solar telescope at the German–Argentinian solar observatory. In: Wilson, A., et al. (eds.) Magnetic Fields and Solar Processes, ESA Special Publication 448, 469. ADS. Google Scholar
  7. Bagalá, L.G., Mandrini, C.H., Rovira, M.G., Démoulin, P.: 2000, Magnetic reconnection: a common origin for flares and AR interconnecting arcs. Astron. Astrophys. 363, 779. ADS. ADSGoogle Scholar
  8. Brooks, D.H., Kurokawa, H., Berger, T.E.: 2007, An H\(\alpha\) surge provoked by moving magnetic features near an emerging flux region. Astrophys. J. 656, 1197. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Büchner, J.: 2006, Locating current sheets in the solar corona. Space Sci. Rev. 122, 149. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Canfield, R.C., Reardon, K.P., Leka, K.D., Shibata, K., Yokoyama, T., Shimojo, M.: 1996, H alpha surges and X-ray jets in AR 7260. Astrophys. J. 464, 1016. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Chae, J., Qiu, J., Wang, H., Goode, P.R.: 1999, Extreme-ultraviolet jets and H\(\alpha\) surges in solar microflares. Astrophys. J. Lett. 513, L75. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Chandra, R., Mandrini, C.H., Schmieder, B., Joshi, B., Cristiani, G.D., Cremades, H., Pariat, E., Nuevo, F.A., Srivastava, A.K., Uddin, W.: 2017, Blowout jets and impulsive eruptive flares in a bald-patch topology. Astron. Astrophys. 598, A41. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Cristiani, G., Martinez, G., Mandrini, C.H., Giménez de Castro, C.G., da Silva, C.W., Rovira, M.G., Kaufmann, P.: 2007, Spatial characterization of a flare using radio observations and magnetic field topology. Solar Phys. 240, 271. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Démoulin, P.: 2006, Extending the concept of separatrices to QSLs for magnetic reconnection. Adv. Space Res. 37, 1269. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Démoulin, P., Hénoux, J.C., Priest, E.R., Mandrini, C.H.: 1996, Quasi-separatrix layers in solar flares. I. Method. Astron. Astrophys. 308, 643. ADS. ADSGoogle Scholar
  16. Démoulin, P., Bagalá, L.G., Mandrini, C.H., Hénoux, J.C., Rovira, M.G.: 1997, Quasi-separatrix layers in solar flares. II. Observed magnetic configurations. Astron. Astrophys. 325, 305. ADS. ADSGoogle Scholar
  17. Effenberger, F., Thust, K., Arnold, L., Grauer, R., Dreher, J.: 2011, Numerical simulation of current sheet formation in a quasi-separatrix layer using adaptive mesh refinement. Phys. Plasmas 18, 32902. CrossRefGoogle Scholar
  18. Fernandez Borda, R.A., Mininni, P.D., Mandrini, C.H., Gómez, D.O., Bauer, O.H., Rovira, M.G.: 2002, Automatic solar flare detection using neural network techniques. Solar Phys. 206, 347. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Foukal, P.V.: 2004, Solar Astrophysics, 2nd edn., 480. ADS. CrossRefGoogle Scholar
  20. Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., et al.: 2007, The X-Ray Telescope (XRT) for the Hinode mission. Solar Phys. 243, 63. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Green, L.M., López fuentes, M.C., Mandrini, C.H., Démoulin, P., Van Driel-Gesztelyi, L., Culhane, J.L.: 2002, The magnetic helicity budget of a cme-prolific active region. Solar Phys. 208, 43. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Guglielmino, S.L., Bellot Rubio, L.R., Zuccarello, F., Aulanier, G., Vargas Domínguez, S., Kamio, S.: 2010, Multiwavelength observations of small-scale reconnection events triggered by magnetic flux emergence in the solar atmosphere. Astrophys. J. 724, 1083. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Guo, Y., Démoulin, P., Schmieder, B., Ding, M.D., Vargas Domínguez, S., Liu, Y.: 2013, Recurrent coronal jets induced by repetitively accumulated electric currents. Astron. Astrophys. 555, A19. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Harrison, R.A., Sime, D.G., Pearce, G.: 1990, The surge events of June 28 and October 30, 1980. Astron. Astrophys. 238, 347. ADS. ADSGoogle Scholar
  25. Heyvaerts, J., Priest, E., Rust, D.M.: 1977, An emerging flux model for solar flares. Solar Phys. 53, 255. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Janvier, M., Aulanier, G., Pariat, E., Démoulin, P.: 2013, The standard flare model in three dimensions. III. Slip-running reconnection properties. Astron. Astrophys. 555, A77. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Janvier, M., Savcheva, A., Pariat, E., Tassev, S., Millholland, S., Bommier, V., McCauley, P., McKillop, S., Dougan, F.: 2016, Evolution of flare ribbons, electric currents, and quasi-separatrix layers during an X-class flare. Astron. Astrophys. 591, A141. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Jibben, P., Canfield, R.C.: 2004, Twist propagation in H\(\alpha\) surges. Astrophys. J. 610, 1129. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Joshi, N.C., Liu, C., Sun, X., Wang, H., Magara, T., Moon, Y.-J.: 2015, The role of erupting sigmoid in triggering a flare with parallel and large-scale quasi-circular ribbons. Astrophys. J. 812, 50. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Joshi, N.C., Sterling, A.C., Moore, R.L., Magara, T., Moon, Y.-J.: 2017, Onset of a large ejective solar eruption from a typical coronal-jet-base field configuration. Astrophys. J. 845, 26. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Joshi, N.C., Nishizuka, N., Filippov, B., Magara, T., Tlatov, A.G.: 2018, Flux rope breaking and formation of a rotating blowout jet. Mon. Not. Roy. Astron. Soc. 476, 1286. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Karpen, J.T., Antiochos, S.K., DeVore, C.R.: 2012, The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. Astrophys. J. 760, 81. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Phys. 275, 17. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Li, H., Yang, J., Jiang, Y., Bi, Y., Qu, Z., Chen, H.: 2018, The surge-like eruption of a miniature filament associated with circular flare ribbon. Astrophys. Space Sci. 363, 26. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., et al.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Liu, Y., Kurokawa, H.: 2004, On a surge: properties of an emerging flux region. Astrophys. J. 610, 1136. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Liu, C., Deng, N., Liu, R., Ugarte-Urra, I., Wang, S., Wang, H.: 2011, A standard-to-blowout jet. Astrophys. J. Lett. 735, L18. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Longcope, D.W.: 2005, Topological methods for the analysis of solar magnetic fields. Living Rev. Solar Phys. 2, 7. DOI. ADS. ADSCrossRefGoogle Scholar
  40. López Fuentes, M.C., Klimchuk, J.A., Mandrini, C.H.: 2007, The temporal evolution of coronal loops observed by GOES SXI. Astrophys. J. 657, 1127. DOI. ADS. ADSCrossRefGoogle Scholar
  41. López Fuentes, M.C., Poisson, M., Mandrini, C.H., Luoni, M.L., Cristiani, G.D., Démoulin, P.: 2015, Análisis de un evento eyectivo en una arcada cerrada. In: CRAAA 58, 37. http://www.astronomiaargentina.org.ar/uploads/docs/craaa58.pdf. Google Scholar
  42. MacTaggart, D., Guglielmino, S.L., Haynes, A.L., Simitev, R., Zuccarello, F.: 2015, The magnetic structure of surges in small-scale emerging flux regions. Astron. Astrophys. 576, A4. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Mandrini, C.H.: 2010, Magnetic energy release: flares and coronal mass ejections. In: Kosovichev, A.G., Andrei, A.H., Rozelot, J.-P. (eds.) IAU Symposium 264, 257. DOI. ADS. CrossRefGoogle Scholar
  44. Mandrini, C.H., Démoulin, P., van Driel-Gesztelyi, L., Schmieder, B., Cauzzi, G., Hofmann, A.: 1996, 3D magnetic reconnection at an X-ray bright point. Solar Phys. 168, 115. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Mandrini, C.H., Démoulin, P., Schmieder, B., Deng, Y.Y., Rudawy, P.: 2002, The role of magnetic bald patches in surges and arch filament systems. Astron. Astrophys. 391, 317. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Mandrini, C.H., Demoulin, P., Schmieder, B., Deluca, E.E., Pariat, E., Uddin, W.: 2006, Companion event and precursor of the X17 flare on 28 October 2003. Solar Phys. 238, 293. DOI. ADS. ADSCrossRefGoogle Scholar
  47. Mandrini, C.H., Schmieder, B., Démoulin, P., Guo, Y., Cristiani, G.D.: 2014, Topological analysis of emerging bipole clusters producing violent solar events. Solar Phys. 289, 2041. DOI. ADS. ADSCrossRefGoogle Scholar
  48. Mandrini, C.H., Baker, D., Démoulin, P., Cristiani, G.D., van Driel-Gesztelyi, L., Vargas Domínguez, S., Nuevo, F.A., Vásquez, A.M., Pick, M.: 2015, Parallel evolution of quasi-separatrix layers and active region upflows. Astrophys. J. 809, 73. DOI. ADS. ADSCrossRefGoogle Scholar
  49. Masson, S., Pariat, E., Aulanier, G., Schrijver, C.J.: 2009, The nature of flare ribbons in coronal null-point topology. Astrophys. J. 700, 559. DOI. ADS. ADSCrossRefGoogle Scholar
  50. Masson, S., Aulanier, G., Pariat, E., Klein, K.-L.: 2012, Interchange slip-running reconnection and sweeping SEP beams. Solar Phys. 276, 199. DOI. ADS. ADSCrossRefGoogle Scholar
  51. Masson, S., Pariat, É., Valori, G., Deng, N., Liu, C., Wang, H., Reid, H.: 2017, Flux rope, hyperbolic flux tube, and late extreme ultraviolet phases in a non-eruptive circular-ribbon flare. Astron. Astrophys. 604, A76. DOI. ADS. ADSCrossRefGoogle Scholar
  52. Milano, L.J., Dmitruk, P., Mandrini, C.H., Gómez, D.O., Démoulin, P.: 1999, Quasi-separatrix layers in a reduced magnetohydrodynamic model of a coronal loop. Astrophys. J. 521, 889. ADSCrossRefGoogle Scholar
  53. Moore, R.L., Sterling, A.C., Panesar, N.K.: 2018, Onset of the magnetic explosion in solar polar coronal X-ray jets. Astrophys. J. 859, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  54. Moore, R.L., Cirtain, J.W., Sterling, A.C., Falconer, D.A.: 2010, Dichotomy of solar coronal jets: standard jets and blowout jets. Astrophys. J. 720, 757. DOI. ADS. ADSCrossRefGoogle Scholar
  55. Moreno-Insertis, F., Galsgaard, K.: 2013, Plasma jets and eruptions in solar coronal holes: a three-dimensional flux emergence experiment. Astrophys. J. 771, 20. DOI. ADS. ADSCrossRefGoogle Scholar
  56. Nóbrega-Siverio, D., Moreno-Insertis, F., Martínez-Sykora, J.: 2016, The cool surge following flux emergence in a radiation-MHD experiment. Astrophys. J. 822, 18. DOI. ADS. ADSCrossRefGoogle Scholar
  57. Panesar, N.K., Sterling, A.C., Moore, R.L.: 2016, Homologous jet-driven coronal mass ejections from solar active region 12192. Astrophys. J. Lett. 822, L23. DOI. ADS. ADSCrossRefGoogle Scholar
  58. Panesar, N.K., Sterling, A.C., Moore, R.L., Chakrapani, P.: 2016, Magnetic flux cancelation as the trigger of solar quiet-region coronal jets. Astrophys. J. Lett. 832, L7. DOI. ADS. ADSCrossRefGoogle Scholar
  59. Pariat, E., Antiochos, S.K., DeVore, C.R.: 2009, A model for solar polar jets. Astrophys. J. 691, 61. DOI. ADS. ADSCrossRefGoogle Scholar
  60. Pariat, E., Antiochos, S.K., DeVore, C.R.: 2010, Three-dimensional modeling of quasi-homologous solar jets. Astrophys. J. 714, 1762. DOI. ADS. ADSCrossRefGoogle Scholar
  61. Pariat, E., Aulanier, G., Démoulin, P.: 2006, A new concept for magnetic reconnection : slip-running reconnection. In: Barret, D., Casoli, F., Lagache, G., Lecavelier, A., Pagani, L. (eds.) SF2A-2006: Semaine de L’Astrophysique Francaise, 559. ADS. Google Scholar
  62. Pariat, E., Dalmasse, K., DeVore, C.R., Antiochos, S.K., Karpen, J.T.: 2015, Model for straight and helical solar jets. I. Parametric studies of the magnetic field geometry. Astron. Astrophys. 573, A130. DOI. ADS. ADSCrossRefGoogle Scholar
  63. Pariat, E., Dalmasse, K., DeVore, C.R., Antiochos, S.K., Karpen, J.T.: 2016, A model for straight and helical solar jets. II. Parametric study of the plasma beta. Astron. Astrophys. 596, A36. DOI. ADS. ADSCrossRefGoogle Scholar
  64. Poisson, M., Mandrini, C.H., Démoulin, P., López Fuentes, M.: 2015, Evidence of twisted flux-tube emergence in active regions. Solar Phys. 290, 727. DOI. ADS. ADSCrossRefGoogle Scholar
  65. Poisson, M., Démoulin, P., López Fuentes, M., Mandrini, C.H.: 2016, Properties of magnetic tongues over a solar cycle. Solar Phys. 291, 1625. DOI. ADS. ADSCrossRefGoogle Scholar
  66. Polito, V., Del Zanna, G., Valori, G., Pariat, E., Mason, H.E., Dudík, J., Janvier, M.: 2017, Analysis and modelling of recurrent solar flares observed with Hinode/EIS on March 9, 2012. Astron. Astrophys. 601, A39. DOI. ADS. CrossRefGoogle Scholar
  67. Qiu, J., Gary, D.E.: 2003, Flare-related magnetic anomaly with a sign reversal. Astrophys. J. 599, 615. DOI. ADS. ADSCrossRefGoogle Scholar
  68. Raouafi, N.E., Patsourakos, S., Pariat, E., Young, P.R., Sterling, A.C., Savcheva, A., Shimojo, M., Moreno-Insertis, F., DeVore, C.R., Archontis, V., Török, T., Mason, H., Curdt, W., Meyer, K., Dalmasse, K., Matsui, Y.: 2016, Solar coronal jets: observations, theory, and modeling. Space Sci. Rev. 201, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  69. Roy, J.R.: 1973, The magnetic properties of solar surges. Solar Phys. 28, 95. DOI. ADS. ADSCrossRefGoogle Scholar
  70. Rust, D.M., Hildner, E., Hansen, R.T., Dryer, M., McClymont, A.N., McKenna-Lawlor, S.M.P., McLean, D.J., Schmahl, E.J., Steinolfson, R.S., Tandberg-Hanssen, E.: 1980, Mass ejections. In: Sturrock, P.A. (ed.) Skylab Solar Workshop II, 273. ADS. Google Scholar
  71. Savcheva, A.S., van Ballegooijen, A.A., DeLuca, E.E.: 2012, Field topology analysis of a long-lasting coronal sigmoid. Astrophys. J. 744, 78. DOI. ADS. ADSCrossRefGoogle Scholar
  72. Savcheva, A., Pariat, E., McKillop, S., McCauley, P., Hanson, E., Su, Y., Werner, E., DeLuca, E.E.: 2015, The relation between solar eruption topologies and observed flare features. I. Flare ribbons. Astrophys. J. 810, 96. DOI. ADS. ADSCrossRefGoogle Scholar
  73. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., et al.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS. ADSCrossRefGoogle Scholar
  74. Schmahl, E.J.: 1981, The physical relationship between flares and surges observed in the extreme ultraviolet. Solar Phys. 69, 135. DOI. ADS. ADSCrossRefGoogle Scholar
  75. Schmieder, B., Mein, P., Simnett, G.M., Tandberg-Hanssen, E.: 1988, An example of the association of X-ray and UV emission with H-alpha surges. Astron. Astrophys. 201, 327. ADS. ADSGoogle Scholar
  76. Schmieder, B., Shibata, K., van Driel-Gesztelyi, L., Freeland, S.: 1995, H alpha surges and associated soft X-ray loops. Solar Phys. 156, 245. DOI. ADS. ADSCrossRefGoogle Scholar
  77. Shen, Y., Liu, Y., Su, J., Deng, Y.: 2012, On a coronal blowout jet: the first observation of a simultaneously produced bubble-like CME and a jet-like CME in a solar event. Astrophys. J. 745, 164. DOI. ADS. ADSCrossRefGoogle Scholar
  78. Shibata, K., Ishido, Y., Acton, L.W., Strong, K.T., Hirayama, T., Uchida, Y., et al.: 1992, Observations of X-ray jets with the YOHKOH soft X-ray telescope. Publ. Astron. Soc. Japan 44, L173. ADS. ADSGoogle Scholar
  79. Sterling, A.C., Moore, R.L., Falconer, D.A., Adams, M.: 2015, Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes. Nature 523, 437. DOI. ADS. ADSCrossRefGoogle Scholar
  80. Sterling, A.C., Moore, R.L., Falconer, D.A., Panesar, N.K., Akiyama, S., Yashiro, S., Gopalswamy, N.: 2016, Minifilament eruptions that drive coronal jets in a solar active region. Astrophys. J. 821, 100. DOI. ADS. ADSCrossRefGoogle Scholar
  81. Titov, V.S., Hornig, G., Démoulin, P.: 2002, Theory of magnetic connectivity in the solar corona. J. Geophys. Res. 107, 1164. CrossRefGoogle Scholar
  82. Uddin, W., Schmieder, B., Chandra, R., Srivastava, A.K., Kumar, P., Bisht, S.: 2012, Observations of multiple surges associated with magnetic activities in AR 10484 on 2003 October 25. Astrophys. J. 752, 70. DOI. ADS. ADSCrossRefGoogle Scholar
  83. Vargas Domínguez, S., Kosovichev, A., Yurchyshyn, V.: 2014, Multi-wavelength high-resolution observations of a small-scale emerging magnetic flux event and the chromospheric and coronal response. Astrophys. J. 794, 140. DOI. ADS. ADSCrossRefGoogle Scholar
  84. Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: observations. Living Rev. Solar Phys. 9, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  85. Wilmot-Smith, A.L., Hornig, G., Pontin, D.I.: 2009, Magnetic braiding and parallel electric fields. Astrophys. J. 696, 1339. ADSCrossRefGoogle Scholar
  86. Wyper, P.F., Antiochos, S.K., DeVore, C.R.: 2017, A universal model for solar eruptions. Nature 544, 452. DOI. ADS. ADSCrossRefGoogle Scholar
  87. Wyper, P.F., DeVore, C.R., Antiochos, S.K.: 2018, A breakout model for solar coronal jets with filaments. Astrophys. J. 852, 98. DOI. ADS. ADSCrossRefGoogle Scholar
  88. Yang, S., Zhang, J.: 2018, Mini-filament eruptions triggering confined solar flares observed by ONSET and SDO. Astrophys. J. Lett. 860, L25. DOI. ADS. ADSCrossRefGoogle Scholar
  89. Yokoyama, T., Shibata, K.: 1995, Magnetic reconnection as the origin of X-ray jets and H\(\alpha\) surges on the Sun. Nature 375, 42. DOI. ADS. ADSCrossRefGoogle Scholar
  90. Yokoyama, T., Shibata, K.: 1996, MHD simulation of solar coronal X-ray jets: emerging flux reconnection model. Astrophys. Lett. Commun. 34, 133. ADS. ADSGoogle Scholar
  91. Young, P.R., Muglach, K.: 2014a, A coronal hole jet observed with Hinode and the solar dynamics observatory. Publ. Astron. Soc. Japan 66, S12. DOI. ADS. ADSCrossRefGoogle Scholar
  92. Young, P.R., Muglach, K.: 2014b, Solar dynamics observatory and Hinode observations of a blowout jet in a coronal hole. Solar Phys. 289, 3313. DOI. ADS. ADSCrossRefGoogle Scholar
  93. Zhao, J., Li, H., Pariat, E., Schmieder, B., Guo, Y., Wiegelmann, T.: 2014, Temporal evolution of the magnetic topology of the NOAA active region 11158. Astrophys. J. 787, 88. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Media B.V. 2018

Authors and Affiliations

  1. 1.Instituto de Astronomía y Física del Espacio (IAFE)CONICET-UBABuenos AiresArgentina
  2. 2.Facultad de Ciencias Exactas y Naturales (FCEN)UBABuenos AiresArgentina
  3. 3.LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Paris DiderotSorbonne Paris CitéParisFrance
  4. 4.Instituto de Ciencias Astronómicas, de la Tierra y del Espacio (ICATE)CONICETSan JuanArgentina

Personalised recommendations