Solar Physics

, 293:159 | Cite as

Flare Productivity of Major Flaring Solar Active Regions: A Time-Series Study of Photospheric Magnetic Properties

  • Eo-Jin Lee
  • Sung-Hong ParkEmail author
  • Yong-Jae Moon


A solar active region (AR) that produces at least one M- or X-class major flare tends to produce multiple flares during its passage across the solar disk. It will be interesting to see if we can estimate how flare-productive a given major flaring AR is for a time interval of several days through investigating time series of its photospheric magnetic field properties. For this, we studied 93 major flaring ARs that were observed from 2010 to 2016 by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). More specifically, for each AR under study, the mean and fluctuation were calculated from an 8-day time series of each of 18 photospheric magnetic parameters extracted from the Space-weather HMI Active Region Patch (SHARP) vector magnetogram products at 12 min cadence. We then compared these with the AR 8-day flare index, which is defined as the sum of soft X-ray peak fluxes of flares produced in the AR during the same interval as the 8-day SHARP parameter time series. As a result, we found that the 8-day flare index is well correlated with the mean and/or fluctuation values of some magnetic parameters (with correlation coefficients of 0.6 – 0.7 in log–log space). Interestingly, the 8-day flare index shows a slightly better correlation with the fluctuation than the mean for the SHARP parameters associated with the surface integral of photospheric magnetic free energy density. We also discuss how the correlation varies if the 8-day flare index is compared with the mean or fluctuation calculated from an initial portion of the SHARP parameter time series.


Active regions, magnetic fields Flares, relation to magnetic field 



The authors would like to thank the anonymous referee for many constructive comments. This work was supported by the BK21 plus program through the National Research Foundation (NRF) funded by the Ministry of Education of Korea, the Basic Science Research Program through the NRF funded by the Ministry of Education (NRF-2016R1A2B4013131), NRF of Korea Grant funded by the Korean Government (NRF-2013M1A3A3A02042232), the Korea Astronomy and Space Science Institute under the R&D program supervised by the Ministry of Science, ICT and Future Planning, the Korea Astronomy and Space Science Institute under the R&D program ‘Development of a Solar Coronagraph on International Space Station (Project No. 2017-1-851-00)’ supervised by the Ministry of Science, ICT and Future Planning, and Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (2018-0-01422, Study on analysis and prediction technique of solar flares). The data used in this work are courtesy of the NASA/SDO and HMI science teams, as well as the Geostationary Satellite System (GOES) team. This research has made use of NASA’s Astrophysics Data System (ADS). S.-H. Park was supported by the European Union Horizon 2020 research and innovation programme under grant agreement No. 640216 (FLARECAST; ) and by MEXT/JSPS KAKENHI Grant No. JP15H05814.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Abramenko, V., Yurchyshyn, V.: 2010, Magnetic energy spectra in solar active regions. Astrophys. J. 720, 717. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Abramenko, V.I.: 2005, Relationship between magnetic power spectrum and flare productivity in solar active regions. Astrophys. J. 629, 1141. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Ahmed, O.W., Qahwaji, R., Colak, T., Higgins, P.A., Gallagher, P.T., Bloomfield, D.S.: 2013, Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Solar Phys. 283, 157. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Antalova, A.: 1996, Daily soft X-ray flare index (1969 – 1972). Contrib. Astron. Obs. Skaln. Pleso 26, 98. ADS. ADSGoogle Scholar
  5. Aschwanden, M.J.: 2012, A statistical fractal-diffusive avalanche model of a slowly-driven self-organized criticality system. Astron. Astrophys. 539, A2. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Baker, D.N.: 2005, In: Scherer, K., Fichtner, H., Heber, B., Mall, U. (eds.) Introduction to Space Weather, Springer, Berlin, 3 ISBN 978-3-540-31534-6. DOI. CrossRefGoogle Scholar
  7. Barnes, G., Leka, K.D., Schrijver, C.J., Colak, T., Qahwaji, R., Ashamari, O.W., Yuan, Y., Zhang, J., McAteer, R.T.J., Bloomfield, D.S., Higgins, P.A., Gallagher, P.T., Falconer, D.A., Georgoulis, M.K., Wheatland, M.S., Balch, C., Dunn, T., Wagner, E.L.: 2016, A comparison of flare forecasting methods. I. Results from the all-clear workshop. Astrophys. J. 829, 89. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Bobra, M.G., Couvidat, S.: 2015, Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798, 135. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Bobra, M.G., Ilonidis, S.: 2016, Predicting coronal mass ejections using machine learning methods. Astrophys. J. 821, 127. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., Leka, K.D.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs – Space-weather HMI Active Region Patches. Solar Phys. 289, 3549. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Charbonneau, P., McIntosh, S.W., Liu, H.-L., Bogdan, T.J.: 2001, Avalanche models for solar flares (invited review). Solar Phys. 203, 321. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Couvidat, S., Schou, J., Hoeksema, J.T., Bogart, R.S., Bush, R.I., Duvall, T.L., Liu, Y., Norton, A.A., Scherrer, P.H.: 2016, Observables processing for the helioseismic and magnetic imager instrument on the solar dynamics observatory. Solar Phys. 291, 1887. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Falconer, D.A., Moore, R.L., Gary, G.A.: 2002, Correlation of the coronal mass ejection productivity of solar active regions with measures of their global nonpotentiality from vector magnetograms: Baseline results. Astrophys. J. 569, 1016. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Handzo, R., Forbes, J.M., Reinisch, B.: 2014, Ionospheric electron density response to solar flares as viewed by Digisondes. Space Weather 12, 205. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Hayes, L.A., Gallagher, P.T., McCauley, J., Dennis, B.R., Ireland, J., Inglis, A.: 2017, Pulsations in the Earth’s lower ionosphere synchronized with solar flare emission. J. Geophys. Res. 122, 9841. DOI. ADS. CrossRefGoogle Scholar
  16. Hoeksema, J.T., Liu, Y., Hayashi, K., Sun, X., Schou, J., Couvidat, S., Norton, A., Bobra, M., Centeno, R., Leka, K.D., Barnes, G., Turmon, M.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: Overview and performance. Solar Phys. 289, 3483. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Hu, K., Ivanov, P.C., Chen, Z., Carpena, P., Eugene Stanley, H.: 2001, Effect of trends on detrended fluctuation analysis. Phys. Rev. E 64(1), 011114. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Janvier, M., Aulanier, G., Bommier, V., Schmieder, B., Démoulin, P., Pariat, E.: 2014, Electric currents in flare ribbons: Observations and three-dimensional Standard Model. Astrophys. J. 788, 60. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Jiang, C., Wu, S.T., Yurchyshyn, V., Wang, H., Feng, X., Hu, Q.: 2016, How did a major confined flare occur in super solar active region 12192? Astrophys. J. 828, 62. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Király, A., Jánosi, I.M.: 2005, Detrended fluctuation analysis of daily temperature records: Geographic dependence over Australia. Meteorol. Atmos. Phys. 88, 119. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Kontogiannis, I., Georgoulis, M.K., Park, S.-H., Guerra, J.A.: 2017, Non-neutralized electric currents in solar active regions and flare productivity. Solar Phys. 292, 159. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Leka, K.D., Barnes, G.: 2003, Photospheric magnetic field properties of flaring versus flare-quiet active regions. II. Discriminant analysis. Astrophys. J. 595, 1296. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Leka, K.D., Barnes, G.: 2007, Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophys. J. 656, 1173. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Liu, C., Lee, J., Karlický, M., Prasad Choudhary, D., Deng, N., Wang, H.: 2009, Successive solar flares and coronal mass ejections on 2005 September 13 from NOAA AR 10808. Astrophys. J. 703, 757. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Liu, C., Deng, N., Wang, J.T.L., Wang, H.: 2017, Predicting solar flares using SDO/HMI vector magnetic data products and the random forest algorithm. Astrophys. J. 843, 104. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Lu, E.T., Hamilton, R.J.: 1991, Avalanches and the distribution of solar flares. Astrophys. J. Lett. 380, L89. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Lugaz, N.: 2015, In: Vial, J.-C., Engvold, O. (eds.) Eruptive Prominences and Their Impact on the Earth and Our Life 433, Springer, Cham ISBN 978-3-319-10416-4. DOI. CrossRefGoogle Scholar
  28. Min, S., Chae, J.: 2009, The rotating sunspot in AR 10930. Solar Phys. 258, 203. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Moore, R.L., Hagyard, M.J., Davis, J.M.: 1987, Flare research with the NASA/MSFC vector magnetograph – Observed characteristics of sheared magnetic fields that produce flares. Solar Phys. 113, 347. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Park, S-h., Chae, J., Wang, H.: 2010, Productivity of solar flares and magnetic helicity injection in active regions. Astrophys. J. 718, 43. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Park, S.-H., Lee, J., Choe, G.S., Chae, J., Jeong, H., Yang, G., Jing, J., Wang, H.: 2008, The variation of relative magnetic helicity around major flares. Astrophys. J. 686, 1397. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Peng, C.-K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: 1994, Mosaic organization of DNA nucleotides. Phys. Rev. E 49, 1685. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Peng, C.-K., Havlin, S., Stanley, H.E., Goldberger, A.L.: 1995, Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Petrie, G.J.D.: 2013, A spatio-temporal description of the abrupt changes in the photospheric magnetic and Lorentz-force vectors during the 15 February 2011 X2.2 flare. Solar Phys. 287, 415. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Ponomarchuk, S.N., Kurkin, V.I., Polekh, N.M., Podlesniy, A.V., Zolotukhina, N.A., Romanova, E.B.: 2015, The effects of space weather for HF propagation in the period of solar flare on 25 February 2014. In: 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, Proceedings of the SPIE 9680, 96805G. DOI. ADS. CrossRefGoogle Scholar
  37. Sadykov, V.M., Kosovichev, A.G.: 2017, Relationships between characteristics of the line-of-sight magnetic field and solar flare forecasts. Astrophys. J. 849, 148. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655, L117. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Schrijver, C.J., Dobbins, R., Murtagh, W., Petrinec, S.M.: 2014, Assessing the impact of space weather on the electric power grid based on insurance claims for industrial electrical equipment. Space Weather 12, 487. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Tian, L., Liu, Y., Wang, J.: 2002, The most violent super-active regions in the 22nd and 23rd cycles. Solar Phys. 209, 361. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Toriumi, S., Iida, Y., Kusano, K., Bamba, Y., Imada, S.: 2014, Formation of a flare-productive active region: Observation and numerical simulation of NOAA AR 11158. Solar Phys. 289, 3351. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Wang, S., Liu, C., Wang, H.: 2012, The relationship between the sudden change of the Lorentz force and the magnitude of associated flares. Astrophys. J. Lett. 757, L5. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Wang, S., Liu, C., Liu, R., Deng, N., Liu, Y., Wang, H.: 2012, Response of the photospheric magnetic field to the X2.2 flare on 2011 February 15. Astrophys. J. Lett. 745, L17. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Wang, S., Liu, C., Deng, N., Wang, H.: 2014, Sudden photospheric motion and sunspot rotation associated with the X2.2 flare on 2011 February 15. Astrophys. J. Lett. 782, L31. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Welsch, B.T., Li, Y., Schuck, P.W., Fisher, G.H.: 2009, What is the relationship between photospheric flow fields and solar flares? Astrophys. J. 705, 821. DOI. ADS. ADSCrossRefGoogle Scholar
  47. Yang, X., Zhang, H., Gao, Y., Guo, J., Lin, G.: 2012, A statistical study on photospheric magnetic nonpotentiality of active regions and its relationship with flares during solar cycles 22 – 23. Solar Phys. 280, 165. DOI. ADS. ADSCrossRefGoogle Scholar
  48. Yang, X., Lin, G., Zhang, H., Mao, X.: 2013, Magnetic nonpotentiality in photospheric active regions as a predictor of solar flares. Astrophys. J. Lett. 774, L27. DOI. ADS. ADSCrossRefGoogle Scholar
  49. Yashiro, S., Gopalswamy, N., Akiyama, S., Michalek, G., Howard, R.A.: 2005, Visibility of coronal mass ejections as a function of flare location and intensity. J. Geophys. Res. 110, A12S05. DOI. ADS. ADSCrossRefGoogle Scholar
  50. Zhang, J., Wang, J., Deng, Y., Wu, D.: 2001, Magnetic flux cancellation associated with the major solar event on 2000 July 14. Astrophys. J. Lett. 548, L99. DOI. ADS. ADSCrossRefGoogle Scholar
  51. Zhao, J., Li, H., Pariat, E., Schmieder, B., Guo, Y., Wiegelmann, T.: 2014, Temporal evolution of the magnetic topology of the NOAA active region 11158. Astrophys. J. 787, 88. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Space ResearchKyung Hee UniversityYonginRepublic of Korea
  2. 2.Institute for Space-Earth Environmental ResearchNagoya UniversityNagoyaJapan
  3. 3.Department of Astronomy and Space ScienceKyung Hee UniversityYonginRepublic of Korea

Personalised recommendations