Advertisement

Solar Physics

, 293:161 | Cite as

Revision of the Sun’s Spectral Irradiance as Measured by SORCE SIM

  • Steffen Mauceri
  • Peter Pilewskie
  • Erik Richard
  • Odele Coddington
  • Jerald Harder
  • Tom Woods
Article

Abstract

The Spectral Irradiance Monitor (SIM) instrument on board the Solar Radiation and Climate Experiment (SORCE) performs daily measurements of the solar spectral irradiance (SSI) from 200 to 2400 nm. Both temporal and spectral corrections for instrument degradation have been built on physical models based on comparison of two independent channels with different solar exposure. The present study derives a novel correction for SIM degradation using the total solar irradiance (TSI) measurements from the Total Irradiance Monitor (TIM) on SORCE. The correction is applied to SIM SSI data from September 2004 to October 2012 over the wavelength range from 205 nm to 2300 nm. The change in corrected, integrated SSI agrees within \(0.1~\mbox{W}\,\mbox{m}^{-2}\) (\(1\sigma\)) with SORCE TIM TSI and independently shows agreement with the SATIRE-S and NRLSSI2 solar models within measurement uncertainties.

Keywords

Solar spectral irradiance Solar spectrum Solar cycle Solar variability Degradation correction 

Notes

Acknowledgements

We thank our anonymous reviewer, whose comments and suggestions strengthened the manuscript and helped to shape its final form.

This research was supported in part by NASA Grant NNX15AI52G.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Ball, W.T., Unruh, Y.C., Krivova, N.A., Solanki, S.K., Harder, J.W.: 2011, Solar irradiance variability: a six-year comparison between SORCE observations and the SATIRE model. Astron. Astrophys. 530, A71. DOI. ADSCrossRefGoogle Scholar
  2. Ball, W.T., Haigh, J.D., Rozanov, E.V., Kuchar, A., Sukhodolov, T., Tummon, F., Shapiro, A.V., Schmutz, W.: 2016, High solar cycle spectral variations inconsistent with stratospheric ozone observations. Nat. Geosci. 9(3), 206. DOI ADSCrossRefGoogle Scholar
  3. Baptista, B.J., Mufson, S.L.: 2013, Radiation hardness studies of InGaAs and Si photodiodes at 30, 52, & 98 MeV and fluences to \(5\times 10^{11}~\mbox{protons}/\mbox{cm}^{2}\). J. Astron. Instr. 2, 1250008. DOI. CrossRefGoogle Scholar
  4. Béland, S., Harder, J., Woods, T.: 2013, 10 years of degradation trends of the SORCE SIM instrument. In: SPIE Optical Engineering + Applications, 88620O. DOI CrossRefGoogle Scholar
  5. Béland, S., Harder, J., Woods, T.: 2014, Eleven years of tracking the SORCE SIM instrument degradation caused by space radiation and solar exposure. In: SPIE Astronomical Telescopes + Instrumentation, 91434W. DOI CrossRefGoogle Scholar
  6. BenMoussa, A., Gissot, S., Schühle, U., Del Zanna, G., Auchère, F., Mekaoui, S., Jones, A.R., Walton, D., Eyles, C.J., Thuillier, G., Seaton, D., Dammasch, I.E., Cessateur, G., Meftah, M., Andretta, V., Berghmans, D., Bewsher, D., Bolsée, D., Bradley, L., Brown, D.S., Chamberlin, P.C., Dewitte, S., Didkovsky, L.V., Dominique, M., Eparvier, F.G., Foujols, T., Gillotay, D., Giordanengo, B., Halain, J.P., Hock, R.A., Irbah, A., Jeppesen, C., Judge, D.L., Kretzschmar, M., McMullin, D.R., Nicula, B., Schmutz, W., Ucker, G., Wieman, S., Woodraska, D., Woods, T.N.: 2013, On-orbit degradation of solar instruments. Solar Phys. 288(1), 389. DOI. ADSCrossRefGoogle Scholar
  7. Carlisle, C., Wedge, R., Wu, D., Stello, H., Robinson, R.: 2015, Total and Spectral Solar Irradiance Sensor (TSIS) project overview. Presentation. Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150023359.pdf.
  8. Cleveland, W.S.: 1981, LOWESS: a program for smoothing scatterplots by robust locally weighted regression. Am. Stat. 35(1), 54. CrossRefGoogle Scholar
  9. Coddington, O., Lean, J.: 2015, Climate algorithm theoretical basis document: total solar irradiance and solar spectral irradiance. CRDP-ATBD-0612, NOAA/NCDC, 56 pp. Available at: https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Solar%20Spectral%20Irradiance/AlgorithmDescription.pdf.
  10. Coddington, O., Lean, J.L., Pilewskie, P., Snow, M., Lindholm, D.: 2015, A solar irradiance climate data record. Bull. Am. Meteorol. Soc. 97(7), 1265. DOI. CrossRefGoogle Scholar
  11. DeLand, M.T., Cebula, R.P.: 2012, Solar UV variations during the decline of Cycle 23. J. Atmos. Solar-Terr. Phys. 77, 225. DOI. ADSCrossRefGoogle Scholar
  12. Ermolli, I., Matthes, K., Dudok De Wit, T., Krivova, N.A., Tourpali, K., Weber, M., Unruh, Y.C., Gray, L., Langematz, U., Pilewskie, P., Rozanov, E., Schmutz, W., Shapiro, A., Solanki, S.K., Woods, T.N.: 2013, Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. 13(8), 3945. DOI. ADSCrossRefGoogle Scholar
  13. Garden, C.: 2000, Effects of proton radiation on InGaAs photodiodes and laserdiodes. ESTEC Working Paper EWP-2117. Google Scholar
  14. Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., et al.: 2010, Solar influences on climate. Rev. Geophys. 48(4), RG4001. DOI ADSCrossRefGoogle Scholar
  15. Gröbner, J., Kröger, I., Egli, L., Hülsen, G., Riechelmann, S., Sperfeld, P.: 2017, The high-resolution extraterrestrial solar spectrum (QASUMEFTS) determined from ground-based solar irradiance measurements. Atmos. Meas. Tech. 10(9), 3375. DOI. CrossRefGoogle Scholar
  16. Haigh, J.D.: 1994, The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature 370, 544. DOI. ADSCrossRefGoogle Scholar
  17. Haigh, J.D., Winning, A.R., Toumi, R., Harder, J.W.: 2010, An influence of solar spectral variations on radiative forcing of climate. Nature 467(7316), 696. DOI. ADSCrossRefGoogle Scholar
  18. Harder, J.W., Lawrence, G.M., Rottman, G.J., Woods, T.N.: 2000, Spectral Irradiance Monitor (SIM) for the SORCE mission. Proc. SPIE 4135, 204. DOI. ADSCrossRefGoogle Scholar
  19. Harder, J., Lawrence, G., Fontenla, J., Rottman, G., Woods, T.: 2005, The spectral irradiance monitor: Scientific requirements, instrument design, and operation modes. Solar Phys. 230, 141. DOI. ADSCrossRefGoogle Scholar
  20. Harder, J., Fontenla, J.M., Pilewskie, P., Richard, E.C., Woods, T.N.: 2009, Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett. 36(7), 1. DOI. CrossRefGoogle Scholar
  21. Harder, J.W., Thuillier, G., Richard, E.C., Brown, S.W., Lykke, K.R., Snow, M., McClintock, W.E., Fontenla, J.M., Woods, T.N., Pilewskie, P.: 2010, The SORCE SIM solar spectrum: comparison with recent observations. Solar Phys. 263(1), 3. DOI. ADSCrossRefGoogle Scholar
  22. Hollenshead, J., Klebanoff, L.: 2006, Modeling radiation-induced carbon contamination of extreme ultraviolet optics. J. Vac. Sci. Technol., B Microelectron. Process. Phenom. 24(1), 64. CrossRefGoogle Scholar
  23. Ineson, S., Maycock, A.C., Gray, L.J., Scaife, A.A., Dunstone, N.J., Harder, J.W., Knight, J.R., Lockwood, M., Manners, J.C., Wood, R.A.: 2015, Regional climate impacts of a possible future grand solar minimum. Nat. Commun. 6, 7535. DOI. ADSCrossRefGoogle Scholar
  24. Kodera, K.: 2002, Solar cycle modulation of the North Atlantic Oscillation: implication in the spatial structure of the NAO. J. Geophys. Res. 110(8), D02111. DOI. ADSCrossRefGoogle Scholar
  25. Kodera, K.: 2004, Solar influence on the Indian Ocean Monsoon through dynamical processes. Geophys. Res. Lett. 31(24), 1. DOI. CrossRefGoogle Scholar
  26. Kodera, K., Coughlin, K., Arakawa, O.: 2007, Possible modulation of the connection between the Pacific and Indian Ocean variability by the solar cycle. Geophys. Res. Lett. 34(3), 2. DOI. CrossRefGoogle Scholar
  27. Kopp, G.: 2014, An assessment of the solar irradiance record for climate studies. J. Space Weather Space Clim. 4, A14. DOI. ADSCrossRefGoogle Scholar
  28. Kopp, G., Heuerman, K., Lawrence, G.: 2005, The total irradiance monitor (TIM): instrument calibration. Solar Phys. 230, 111. DOI. ADSCrossRefGoogle Scholar
  29. Kopp, G., Lawrence, G.: 2005, The Total Irradiance Monitor (TIM): instrument design. Solar Phys. 230, 91. DOI. ADSCrossRefGoogle Scholar
  30. Kopp, G., Lean, J.L.: 2011, A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett. 38(1), L01706. DOI. ADSCrossRefGoogle Scholar
  31. Lean, J.L., DeLand, M.T.: 2012, How does the Sun’s spectrum vary?. J. Climate 25(7), 2555. DOI. ADSCrossRefGoogle Scholar
  32. Levelt, P.F., van den Oord, G.H.J., Dobber, M.R., Malkki, A., Visser, H., de Vries, J., Stammes, P., Lundell, J.O.V., Saari, H.: 2006, The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 44(5), 1093. DOI. ADSCrossRefGoogle Scholar
  33. Marchenko, S.V., Deland, M.T.: 2014, Solar spectral irradiance changes during cycle 24. Astrophys. J. 789(2), 117. DOI. ADSCrossRefGoogle Scholar
  34. Marchenko, S., DeLand, M.: 2018, OMI Solar Spectral Irradiance Data (UPDATE). Available at: https://sbuv2.gsfc.nasa.gov/solar/omi/.
  35. Marchenko, S.V., DeLand, M.T., Lean, J.L.: 2016, Solar spectral irradiance variability in Cycle 24: observations and models. J. Space Weather Space Clim. 40, 1. DOI. CrossRefGoogle Scholar
  36. McClintock, W.E., Rottman, G.J., Woods, T.N.: 2005, Solar-stellar irradiance comparison experiment II (SOLSTICE II): Instrument concept and design. Solar Phys. 230, 225. DOI. ADSCrossRefGoogle Scholar
  37. Meehl, G.A., Arblaster, J.M., Matthes, K., Sassi, F., van Loon, H.: 2009, Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science 325(5944), 1114. DOI. ADSCrossRefGoogle Scholar
  38. Pagaran, J., Weber, M., Burrows, J.: 2009, Solar variability from 240 to 1750 nm in terms of faculae brightening and sunspot darkening from SCIAMACHY. Astrophys. J. 700(2), 1884. DOI. ADSCrossRefGoogle Scholar
  39. Pap, J.M., Fox, P.A. (Eds.): 2003, Solar Variability and Its Effects on Climate, Geophysical Monograph Series 141, American Geophysical, Union, Washington D.C. Google Scholar
  40. Pedroza, G., Gilard, O., Bourqui, M.-L., Bechou, L., Deshayes, Y., How, L.S., Rosala, F.: 2009, Proton effects on low noise and high responsivity silicon-based photodiodes for space environment. J. Appl. Phys. 105(2), 24513. DOI. CrossRefGoogle Scholar
  41. Pilewskie, P., Richard, E., Coddington, O., Harder, J.: 2016, Solar spectral irradiance and climate: current understanding and future observations from the total and spectral solar irradiance sensor. In: International Radiation Symposium, University of Auckland, New Zealand. Google Scholar
  42. Richard, E., Harber, D., Smith, P., Rutkowski, J., Castleman, Z., Drake, G.: 2015, A compact solar spectral irradiance monitor for future small satellite and CubeSat science opportunities. In: Challanges & Opportunities in Solar Observations. Available at: http://lasp.colorado.edu/media/projects/SORCE/meetings/2015/presentations/Session%207/f_Richard_CSIM_Savannah_2015.pdf. Google Scholar
  43. Rind, D., Lean, J., Lerner, J., Lonergan, P., Leboissitier, A.: 2008, Exploring the stratospheric/tropospheric response to solar forcing. J. Geophys. Res., Atmos. 113, D24103. DOI ADSCrossRefGoogle Scholar
  44. Rottman, G.: 2005, The SORCE mission. Solar Phys. 230(1–2), 7. DOI ADSCrossRefGoogle Scholar
  45. Ruzmaikin, A., Lee, J.N., Wu, D.L.: 2014, Patterns of carbon monoxide in the middle atmosphere and effects of solar variability. Adv. Space Res. 54(3), 320. DOI. ADSCrossRefGoogle Scholar
  46. Shapiro, A.V., Rozanov, E., Shapiro, A.I., Wang, S., Egorova, T., Schmutz, W., Peter, T.: 2012, Signature of the 27-day solar rotation cycle in mesospheric OH and \(\mbox{H}_{2}\mbox{O}\) observed by the Aura Microwave Limb Sounder. Atmos. Chem. Phys. 12(7), 3181. DOI. ADSCrossRefGoogle Scholar
  47. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., et al.: 2007, IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge. Google Scholar
  48. Sukhodolov, T., Rozanov, E., Ball, W.T., Peter, T., Schmutz, W.: 2017, Modeling of the middle atmosphere response to 27-day solar irradiance variability. J. Atmos. Solar-Terr. Phys. 152–153, 50. DOI. ADSCrossRefGoogle Scholar
  49. Thuillier, G., Floyd, L., Woods, T.N., Cebula, R., Hilsenrath, E., Hersé, M., Labs, D.: 2004, Solar irradiance reference spectra for two solar active levels. Adv. Space Res. 34(2), 256. DOI. ADSCrossRefGoogle Scholar
  50. Woods, T.N., Rottman, G.J.: 2005, XUV Photometer System (XPS): Solar variations during the SORCE mission. Solar Phys. 230, 375. DOI. ADSCrossRefGoogle Scholar
  51. Woods, T.N., Chamberlin, P.C., Harder, J.W., Hock, R.A., Snow, M., Eparvier, F.G., Fontenla, J., McClintock, W.E., Richard, E.C.: 2009, Solar irradiance reference spectra (SIRS) for the 2008 whole heliosphere interval (WHI). Geophys. Res. Lett. 36(1), L01101. DOI. ADSCrossRefGoogle Scholar
  52. Yeo, K.L., Krivova, N.A., Solanki, S.K., Glassmeier, K.H.: 2014, Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. Astron. Astrophys. 570, A85. DOI. ADSCrossRefGoogle Scholar
  53. Yeo, K.L., Ball, W.T., Krivova, N.A., Solanki, S.K., Unruh, Y.C., Morrill, J.: 2015, UV solar irradiance in observations and the NRLSSI and SATIRE-S models. J. Geophys. Res. 120(8), 6055. DOI CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Atmospheric and Oceanic SciencesCU BoulderBoulderUSA
  2. 2.Laboratory for Atmospheric and Space PhysicsBoulderUSA

Personalised recommendations