Advertisement

Solar Physics

, 293:160 | Cite as

Flare-related Recurring Active Region Jets: Evidence for Very Hot Plasma

  • Sargam M. Mulay
  • Sarah Matthews
  • Takahiro Hasegawa
  • Giulio Del Zanna
  • Helen Mason
  • Toshifumi Shimizu
Article

Abstract

We present a study of two active region jets (AR jets) that are associated with two C-class X-ray flares. The recurrent, homologous jets originated from the northern periphery of a sunspot. We confirm flare-like temperatures at the footpoints of these jets using spectroscopic observations of Fe xxiii (263.76 Å) and Fe xxiv (255.11 Å) emission lines. The emission measure loci method was used to obtain an isothermal temperature, and the results show a decrease (17.7 to 13.6 MK) in the temperature during the decay phase of the C 3.0 flare. The electron number densities at the footpoints were found to range from \(1.7 \times 10^{10}\) to \(2.0 \times 10^{11}~\mbox{cm}^{-3}\) using the Fe xiv line pair ratio. Nonthermal velocities were found to range from 34 – 100 km/s for Fe xxiv and 51 – 89 km/s for Fe xxiii. The plane-of-sky velocities were calculated to be \(462 \pm 21\) and \(228 \pm 23~\mbox{km}/\mbox{s}\) for the two jets using the Atmospheric Imaging Assembly (AIA) 171 Å channel. The AIA light curves of the jet footpoint regions confirmed the temporal and spatial correlation between the two X-ray flares and the jet footpoint emission. The Gamma-ray Burst Monitor (GBM) also confirmed superhot plasma of 27 (25) MK with a nonthermal energy of \(2.38 \times 10^{26}\) (\(2.87 \times 10^{27}\)) \(\mbox{erg}\,\mbox{s}^{-1}\) in the jet footpoint region during the rise (peak) phase of one of the flares. The temperatures of the jet footpoint regions obtained from EIS agree very well (within an uncertainty of 20%) with temperatures obtained from the Geostationary Environmental Operational Satellite (GOES) flux ratios. These results provide clear evidence for very hot plasma (\({>}\,10~\mbox{MK}\)) at the footpoints of the flare-related jets, and they confirm the heating and cooling of the plasma during the flares.

Keywords

Active regions Corona Flares Heating Jets Spectral line 

Notes

Acknowledgements

The data analysis and results presented in this paper are an outcome of collaborative work. This project has been funded through the award of the Daiwa-Adrian Prize through the Daiwa Anglo-Japanese foundation. The work was carried out when one of the authors, S.M.M., was a Ph.D. student at the University of Cambridge, UK. This work (except FERMI and HMI data analysis) has been included in her Ph.D. thesis as Chapter 9. SMM acknowledges support from the Cambridge Trust, University of Cambridge, UK. HEM, GDZ and SAM (grant number ST/N000722/1) acknowledge the support of STFC. AIA data are courtesy of SDO (NASA) and the AIA consortium. CHIANTI is a collaborative project involving George Mason University, the University of Michigan (USA) and the University of Cambridge (UK). Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in co-operation with ESA and NSC (Norway). We acknowledge the RHESSI team for the open access to the data. We also acknowledge the use of Fermi Solar Flare Observations facility which is funded by the Fermi GI program ( http://hesperia.gsfc.nasa.gov/fermi_solar/ ).

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11207_2018_1376_MOESM1_ESM.mp4 (9 mb)
(MP4 9.0 MB)

References

  1. Asplund, M., Grevesse, N., Sauval, A.J., Scott, P.: 2009, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Atwood, W.B., Abdo, A.A., Ackermann, M., Althouse, W., Anderson, B., Axelsson, M., Baldini, L., Ballet, J., Band, D.L., Barbiellini, G., et al.: 2009, The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 697, 1071. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Bain, H.M., Fletcher, L.: 2009, Hard X-ray emission from a flare-related jet. Astron. Astrophys. 508, 1443. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Benz, A.O., Krucker, S., Hurford, G.J., Arnold, N.G., Orleanski, P., Gröbelbauer, H.-P., Klober, S., Iseli, L., Wiehl, H.J., Csillaghy, A., Etesi, L., Hochmuth, N., Battaglia, M., Bednarzik, M., Resanovic, R., Grimm, O., Viertel, G., Commichau, V., Meuris, A., Limousin, O., Brun, S., Vilmer, N., Skup, K.R., Graczyk, R., Stolarski, M., Michalska, M., Nowosielski, W., Cichocki, A., Mosdorf, M., Seweryn, K., Przepiórka, A., Sylwester, J., Kowalinski, M., Mrozek, T., Podgorski, P., Mann, G., Aurass, H., Popow, E., Onel, H., Dionies, F., Bauer, S., Rendtel, J., Warmuth, A., Woche, M., Plüschke, D., Bittner, W., Paschke, J., Wolker, D., Van Beek, H.F., Farnik, F., Kasparova, J., Veronig, A.M., Kienreich, I.W., Gallagher, P.T., Bloomfield, D.S., Piana, M., Massone, A.M., Dennis, B.R., Schwarz, R.A., Lin, R.P.: 2012, The spectrometer telescope for imaging x-rays on board the Solar Orbiter mission. In: Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, Proc. SPIE 8443, 84433L. DOI. ADS. CrossRefGoogle Scholar
  5. Bissaldi, E., von Kienlin, A., Lichti, G., Steinle, H., Bhat, P.N., Briggs, M.S., Fishman, G.J., Hoover, A.S., Kippen, R.M., Krumrey, M., Gerlach, M., Connaughton, V., Diehl, R., Greiner, J., van der Horst, A.J., Kouveliotou, C., McBreen, S., Meegan, C.A., Paciesas, W.S., Preece, R.D., Wilson-Hodge, C.A.: 2009, Ground-based calibration and characterization of the Fermi gamma-ray burst monitor detectors. Exp. Astron. 24, 47. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Brosius, J.W.: 2013, Rapid evolution of the solar atmosphere during the impulsive phase of a microflare observed with the extreme-ultraviolet imaging spectrometer aboard Hinode: Hints of chromospheric magnetic reconnection. Astrophys. J. 777, 135. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Chae, J., Qiu, J., Wang, H., Goode, P.R.: 1999, Extreme-ultraviolet jets and H\(\upalpha\) surges in solar microflares. Astrophys. J. Lett. 513, L75. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Chandra, R., Gupta, G.R., Mulay, S., Tripathi, D.: 2015, Sunspot waves and triggering of homologous active region jets. Mon. Not. Roy. Astron. Soc. 446, 3741. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Chen, N., Ip, W.-H., Innes, D.: 2013, Flare-associated type III radio bursts and dynamics of the EUV jet from SDO/AIA and RHESSI observations. Astrophys. J. 769, 96. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Chifor, C., Young, P.R., Isobe, H., Mason, H.E., Tripathi, D., Hara, H., Yokoyama, T.: 2008, An active region jet observed with Hinode. Astron. Astrophys. 481, L57. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Christe, S., Krucker, S., Lin, R.P.: 2008, Hard X-rays associated with type III radio bursts. Astrophys. J. Lett. 680, L149. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., Winter, B., Doschek, G.A., Korendyke, C.M., Brown, C.M., Myers, S., Mariska, J., Seely, J., Lang, J., Kent, B.J., Shaughnessy, B.M., Young, P.R., Simnett, G.M., Castelli, C.M., Mahmoud, S., Mapson-Menard, H., Probyn, B.J., Thomas, R.J., Davila, J., Dere, K., Windt, D., Shea, J., Hagood, R., Moye, R., Hara, H., Watanabe, T., Matsuzaki, K., Kosugi, T., Hansteen, V., Wikstol, Ø.: 2007, The EUV Imaging Spectrometer for Hinode. Solar Phys. 243, 19. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Del Zanna, G.: 2009a, Benchmarking atomic data for astrophysics: Fe VII and other cool lines observed by Hinode EIS. Astron. Astrophys. 508, 501. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Del Zanna, G.: 2009b, Benchmarking atomic data for astrophysics: Fe VIII EUV lines. Astron. Astrophys. 508, 513. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Del Zanna, G.: 2010, Benchmarking atomic data for astrophysics: Fe xi. Astron. Astrophys. 514, A41. DOI. ADS. CrossRefGoogle Scholar
  16. Del Zanna, G.: 2013a, A revised radiometric calibration for the Hinode/EIS instrument. Astron. Astrophys. 555, A47. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Del Zanna, G.: 2013b, The multi-thermal emission in solar active regions. Astron. Astrophys. 558, A73. DOI. ADS. CrossRefGoogle Scholar
  18. Del Zanna, G., O’Dwyer, B., Mason, H.E.: 2011, SDO AIA and Hinode EIS observations of “warm” loops. Astron. Astrophys. 535, A46. DOI. ADS. CrossRefGoogle Scholar
  19. Del Zanna, G., Aulanier, G., Klein, K.-L., Török, T.: 2011, A single picture for solar coronal outflows and radio noise storms. Astron. Astrophys. 526, A137. DOI. ADS. CrossRefGoogle Scholar
  20. Del Zanna, G., Dere, K.P., Young, P.R., Landi, E., Mason, H.E.: 2015, CHIANTI – An atomic database for emission lines. Version 8. Astron. Astrophys. 582, A56. DOI. ADS. CrossRefGoogle Scholar
  21. Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, CHIANTI – An atomic database for emission lines. Astron. Astrophys. Suppl. Ser. 125, 149. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Doschek, G.A., Warren, H.P., Dennis, B.R., Reep, J.W., Caspi, A.: 2015, Flare footpoint regions and a surge observed by Hindode/EIS, RHESSI, and SDO/AIA. Astrophys. J. 813, 32. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Feldman, U., Doschek, G.A., Behring, W.E., Phillips, K.J.H.: 1996, Electron temperature, emission measure, and X-ray flux in A2 to X2 X-ray class solar flares. Astrophys. J. 460, 1034. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Garcia, H.A.: 1994, Temperature and emission measure from GOES soft X-ray measurements. Solar Phys. 154, 275. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Glesener, L., Krucker, S., Lin, R.P.: 2012, Hard X-ray observations of a jet and accelerated electrons in the corona. Astrophys. J. 754, 9. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Hong, J., Jiang, Y., Yang, J., Li, H., Xu, Z.: 2017, Minifilament eruption as the source of a blowout jet, C-class flare, and type-III radio burst. Astrophys. J. 835, 35. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Hurford, G.J., Schmahl, E.J., Schwartz, R.A., Conway, A.J., Aschwanden, M.J., Csillaghy, A., Dennis, B.R., Johns-Krull, C., Krucker, S., Lin, R.P., McTiernan, J., Metcalf, T.R., Sato, J., Smith, D.M.: 2002, The RHESSI imaging concept. Solar Phys. 210, 61. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Innes, D.E., Cameron, R.H., Solanki, S.K.: 2011, EUV jets, type III radio bursts and sunspot waves investigated using SDO/AIA observations. Astron. Astrophys. 531, L13. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Klassen, A., Gómez-Herrero, R., Heber, B.: 2011, Electron spikes, type III radio bursts and EUV jets on 22 February 2010. Solar Phys. 273, 413. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: An overview. Solar Phys. 243, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Krucker, S., Saint-Hilaire, P., Christe, S., White, S.M., Chavier, A.D., Bale, S.D., Lin, R.P.: 2008, Coronal hard X-ray emission associated with radio type III bursts. Astrophys. J. 681, 644. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Krucker, S., Kontar, E.P., Christe, S., Glesener, L., Lin, R.P.: 2011, Electron acceleration associated with solar jets. Astrophys. J. 742, 82. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Kundu, M.R., Raulin, J.P., Nitta, N., Hudson, H.S., Shimojo, M., Shibata, K., Raoult, A.: 1995, Detection of nonthermal radio emission from coronal X-ray jets. Astrophys. J. Lett. 447, L135. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Li, X., Yang, S., Chen, H., Li, T., Zhang, J.: 2015, Trigger of a blowout jet in a solar coronal mass ejection associated with a flare. Astrophys. J. Lett. 814, L13. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Liu, J., Wang, Y., Shen, C., Liu, K., Pan, Z., Wang, S.: 2015, A solar coronal jet event triggers a coronal mass ejection. Astrophys. J. 813, 115. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Liu, J., Wang, Y., Erdélyi, R., Liu, R., McIntosh, S.W., Gou, T., Chen, J., Liu, K., Liu, L., Pan, Z.: 2016, On the magnetic and energy characteristics of recurrent homologous jets from an emerging flux. Astrophys. J. 833, 150. DOI. ADSCrossRefGoogle Scholar
  40. Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, R.I., Duvall, T.L., Hayashi, K., Sun, X., Zhao, X.: 2012, Comparison of line-of-sight magnetograms taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager. Solar Phys. 279, 295. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Madjarska, M.S.: 2011, Dynamics and plasma properties of an X-ray jet from SUMER, EIS, XRT, and EUVI A & B simultaneous observations. Astron. Astrophys. 526, A19. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Miao, Y.H., Liu, Y., Shen, Y.D., Elmhamdi, A., Kordi, A.S.: 2017, A coronal blowout jet associated with a double-CME and shock wave. ArXiv e-prints. arXiv [astro-ph.SR]
  43. Mulay, S.M., Del Zanna, G., Mason, H.: 2017a, Cool and hot emission in a recurring active region jet. Astron. Astrophys. 606, A4. DOI. ADS. CrossRefGoogle Scholar
  44. Mulay, S.M., Del Zanna, G., Mason, H.: 2017b, Temperature and density structure of a recurring active region jet. Astron. Astrophys. 598, A11. DOI. ADS. CrossRefGoogle Scholar
  45. Mulay, S.M., Tripathi, D., Del Zanna, G., Mason, H.: 2016, Multiwavelength study of 20 jets that emanate from the periphery of active regions. Astron. Astrophys. 589, A79. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Müller, D., Marsden, R.G., St. Cyr, O.C., Gilbert, H.R.: 2013, Solar orbiter. Exploring the Sun-heliosphere connection. Solar Phys. 285, 25. DOI. ADS. ADSCrossRefGoogle Scholar
  47. Nitta, N.V., Reames, D.V., De Rosa, M.L., Liu, Y., Yashiro, S., Gopalswamy, N.: 2006, Solar sources of impulsive solar energetic particle events and their magnetic field connection to the Earth. Astrophys. J. 650, 438. DOI. ADS. ADSCrossRefGoogle Scholar
  48. Nitta, N.V., Mason, G.M., Wiedenbeck, M.E., Cohen, C.M.S., Krucker, S., Hannah, I.G., Shimojo, M., Shibata, K.: 2008, Coronal jet observed by Hinode as the source of a 3He-rich solar energetic particle event. Astrophys. J. Lett. 675, L125. DOI. ADS. ADSCrossRefGoogle Scholar
  49. Nitta, N.V., Mason, G.M., Wang, L., Cohen, C.M.S., Wiedenbeck, M.E.: 2015, Solar sources of 3He-rich solar energetic particle events in Solar Cycle 24. Astrophys. J. 806, 235. DOI. ADS. ADSCrossRefGoogle Scholar
  50. O’Dwyer, B., Del Zanna, G., Mason, H.E., Weber, M.A., Tripathi, D.: 2010, SDO/AIA response to coronal hole, quiet Sun, active region, and flare plasma. Astron. Astrophys. 521, A21. DOI. ADS. CrossRefGoogle Scholar
  51. Ogawara, Y., Takano, T., Kato, T., Kosugi, T., Tsuneta, S., Watanabe, T., Kondo, I., Uchida, Y.: 1991, The SOLAR-A Mission – An overview. Solar Phys. 136, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  52. Panesar, N.K., Sterling, A.C., Moore, R.L.: 2016, Homologous jet-driven coronal mass ejections from solar active region 12192. Astrophys. J. Lett. 822, L23. DOI. ADS. ADSCrossRefGoogle Scholar
  53. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  54. Pick, M., Mason, G.M., Wang, Y.-M., Tan, C., Wang, L.: 2006, Solar source regions for 3He-rich solar energetic particle events identified using imaging radio, optical, and energetic particle observations. Astrophys. J. 648, 1247. DOI. ADS. ADSCrossRefGoogle Scholar
  55. Polito, V., Reep, J.W., Reeves, K.K., Simões, P.J.A., Dudík, J., Del Zanna, G., Mason, H.E., Golub, L.: 2016, Simultaneous IRIS and Hinode/EIS observations and modelling of the 2014 October 27 X2.0 class flare. Astrophys. J. 816, 89. DOI. ADS. ADSCrossRefGoogle Scholar
  56. Raulin, J.P., Kundu, M.R., Hudson, H.S., Nitta, N., Raoult, A.: 1996, Metric type III bursts associated with soft X-ray jets. Astron. Astrophys. 306, 299. ADS. ADSGoogle Scholar
  57. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS. ADSCrossRefGoogle Scholar
  58. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI. ADS. ADSCrossRefGoogle Scholar
  59. Sterling, A.C., Moore, R.L., Panesar, N.K.: 2018, Magnetic flux cancelation as the buildup and trigger mechanism for CME-producing eruptions in two small active regions. Astrophys. J. 864, 1. DOI. CrossRefGoogle Scholar
  60. Thomas, R.J., Crannell, C.J., Starr, R.: 1985, Expressions to determine temperatures and emission measures for solar X-ray events from GOES measurements. Solar Phys. 95, 323. DOI. ADS. ADSCrossRefGoogle Scholar
  61. Wang, Y.-M., Pick, M., Mason, G.M.: 2006, Coronal holes, jets, and the origin of 3He-rich particle events. Astrophys. J. 639, 495. DOI. ADS. ADSCrossRefGoogle Scholar
  62. White, S.M., Thomas, R.J., Schwartz, R.A.: 2005, Updated expressions for determining temperatures and emission measures from goes soft X-ray measurements. Solar Phys. 227, 231. DOI. ADS. ADSCrossRefGoogle Scholar
  63. Zhang, Q.M., Ji, H.S.: 2014, A swirling flare-related EUV jet. Astron. Astrophys. 561, A134. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.DAMTP, Centre for Mathematical SciencesUniversity of CambridgeCambridgeUK
  2. 2.Inter-University Centre for Astronomy and Astrophysics (IUCAA)GaneshkhindIndia
  3. 3.Department of Space and Climate Physics, Mullard Space Science LaboratoryUniversity College LondonLondonUK
  4. 4.Department of Earth and Planetary Science, Graduate School of ScienceThe University of TokyoBunkyo-kuJapan
  5. 5.Institute of Space and Astronautical ScienceJapan Aerospace Exploration AgencySagamiharaJapan

Personalised recommendations