Solar Physics

, 293:150 | Cite as

Sunspot Positions and Areas from Observations by Pierre Gassendi

  • Mikhail Vokhmyanin
  • Nadezhda ZolotovaEmail author


Solar activity behaviour on the eve of the Maunder minimum may provide important information on the period of further suppression of sunspot population. We analyse sunspot positions and areas in the 1630s extracted from rare drawings published by Pierre Gassendi in Opera Omnia. This work was published in two different editions, the first in Lyon and the second almost 70 years later in Florence. The drawings published in Lyon are found to be slightly different from those published in Florence, which produces a discrepancy in the position of spots of a few degrees, while sunspot group areas may differ by a factor of two. We reveal that the orientation of the drawings in the book is not always the same as might be seen in the telescope. We conjecture that the time of Gassendi’s observations covers the beginning of a new Schwabe cycle in the southern hemisphere. The differential rotation rate in the 1630s is also assessed and discussed.


Sunspots Solar cycle, observations Sunspots, velocity 



We use data from the Royal Greenwich Observatory, United States Air Force, National Aeronautics and Space Administration (RGO/USAF/NOAA: ), the revised version of Greenwich Photoheliographic Results (GPR) sunspot catalogue provided by the Debrecen Heliophysical Observatory (DHO: ), regular solar observations at the Kislovodsk Mountain Astronomical Station GAS GAO ( ), the database by Hoyt and Schatten (1998) provided by the National Geophysical Data Center (NOAA/NGDS: ), sunspot positions provided by Arlt et al. (2016) and Soon and Yaskell (2003), and the CalSky Project ( ) by Arnold Barmettler, Switzerland.

We warmly thank Roger Ceragioli (a professional optician and specialist in the history of telescopes at the University of Arizona Steward Observatory Mirror Lab) and Albert Van Helden (professor of history, Rice University, The Galileo Project ), who kindly helped us with the Latin texts.

The reported study was funded by RFBR according to the research project No. 16-02-00300-a.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11207_2018_1372_MOESM1_ESM.txt (22 kb)
(TXT 22 kB)


  1. Arlt, R.: 2008, Digitization of sunspot drawings by Staudacher in 1749 – 1796. Solar Phys. 247, 399. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Arlt, R.: 2009, The butterfly diagram in the eighteenth century. Solar Phys. 255, 143. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Arlt, R., Senthamizh Pavai, V., Schmiel, C., Spada, F.: 2016, Sunspot positions, areas, and group tilt angles for 1611 – 1631 from observations by Christoph Scheiner. Astron. Astrophys. 595, A104. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Balthasar, H., Vázquez, M., Wöhl, H.: 1986, Differential rotation of sunspot groups in the period from 1874 through 1976 and changes of the rotation velocity within the solar cycle. Astron. Astrophys. 155, 87. ADS. ADSGoogle Scholar
  5. Baranyi, T., Győri, L., Ludmány, A.: 2016, On-line tools for solar data compiled at the Debrecen observatory and their extensions with the Greenwich sunspot data. Solar Phys. 291, 3081. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Baranyi, T., Győri, L., Ludmány, A., Coffey, H.E.: 2001, Comparison of sunspot area data bases. Mon. Not. Roy. Astron. Soc. 323, 223. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Brandenburg, A., Spiegel, E.A.: 2008, Modeling a Maunder minimum. Astron. Nachr. 329, 351. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Carrasco, V.M.S., Álvarez, J.V., Vaquero, J.M.: 2015, Sunspots during the Maunder minimum from Machina Coelestis by Hevelius. Solar Phys. 290, 2719. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Carrasco, V.M.S., Vaquero, J.M.: 2016, Sunspot observations during the Maunder minimum from the correspondence of John Flamsteed. Solar Phys. 291, 2493. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Carrasco, V.M.S., Vaquero, J.M., Arlt, R., Gallego, M.C.: 2018, Sunspot observations made by Hallaschka during the Dalton minimum. Solar Phys. 293, 102. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Casas, R., Vaquero, J.M., Vazquez, M.: 2006, Solar rotation in the 17th century. Solar Phys. 234, 379. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2014, Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci. Rev. 186, 35. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Clette, F., Cliver, E.W., Lefèvre, L., Svalgaard, L., Vaquero, J.M.: 2015, Revision of the sunspot number(s). Space Weather 13(9), 529. DOI. ADSCrossRefGoogle Scholar
  14. Clette, F., Cliver, E.W., Lefèvre, L., Svalgaard, L., Vaquero, J.M., Leibacher, J.W.: 2016, Preface to topical issue: Recalibration of the sunspot number. Solar Phys. 291, 2479. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Eddy, J.A., Gilman, P.A., Trotter, D.E.: 1977, Anomalous solar rotation in the early 17th century. Science 198, 824. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Gassendi, P.: 1658, Diniensis ecclesiae praepositi ... opera omnia in sex tomos divisa. Tomus quartus, L. Anisson & Joan B. Devenet, Ludguni. Google Scholar
  17. Gassendi, P.: 1727, Diniensis ecclesiae praepositi ... opera omnia in sex tomos divisa. Tomus quartus, Typis Regiae Celsitudinis, Florentiae. Google Scholar
  18. Gleissberg, W.: 1944, A secular change in the shape of the spot-frequency curve. Observatory 65, 244. ADSGoogle Scholar
  19. Gleissberg, W.: 1967, Secularly smoothed data on the minima and maxima of sunspot frequency. Solar Phys. 2, 231. ADSCrossRefGoogle Scholar
  20. Gleissberg, W., Damboldt, T., Schove, D.J.: 1979, Reflections of the Maunder minimum of sunspots. J. Br. Astron. Assoc. 89, 440. ADSGoogle Scholar
  21. Győri, L., Ludmány, A., Baranyi, T.: 2017, Comparative analysis of Debrecen sunspot catalogues. Mon. Not. Roy. Astron. Soc. 465, 1259. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Hoyt, D.V., Schatten, K.H.: 1998, Group sunspot numbers: A new solar activity reconstruction. Solar Phys. 179, 189. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Karak, B.B., Choudhuri, A.R.: 2012, Is meridional circulation important in modelling irregularities of the solar cycle? In: Mandrini, C.H., Webb, D.F. (eds.) Comparative Magnetic Minima: Characterizing Quiet Times in the Sun and Stars, IAU Symposium 286, 367. DOI. ADS. CrossRefGoogle Scholar
  24. Kitchatinov, L.L., Mordvinov, A.V., Nepomnyashchikh, A.A.: 2018, Modelling variability of solar activity cycles. Astron. Astrophys. 615, A38. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Küker, M., Arlt, R., Rüdiger, G.: 1999, The Maunder minimum as due to magnetic Lambda-quenching. Astron. Astrophys. 343, 977. ADS. ADSGoogle Scholar
  26. Lassen, K., Friis-Christensen, E.: 1995, Variability of the solar cycle length during the past five centuries and the apparent association with terrestrial climate. J. Atmos. Terr. Phys. 57, 835. ADSCrossRefGoogle Scholar
  27. Leussu, R., Usoskin, I.G., Arlt, R., Mursula, K.: 2016, Properties of sunspot cycles and hemispheric wings since the 19th century. Astron. Astrophys. 592, A160. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Muñoz-Jaramillo, A., Sheeley, N.R., Zhang, J., DeLuca, E.E.: 2012, Calibrating 100 years of polar faculae measurements: Implications for the evolution of the heliospheric magnetic field. Astrophys. J. 753, 146. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Nagovitsyn, Y.A.: 1988, A “synthetic” series of yearly means of polar facular numbers for 1847 – 1979. Byull. Soln. Dannye Akad. Nauk SSSR 1988/8, 88. ADS. ADSGoogle Scholar
  30. Neuhäuser, R., Neuhäuser, D.L.: 2016, Sunspot numbers based on historic records in the 1610s: Early telescopic observations by Simon Marius and others. Astron. Nachr. 337, 581. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Neuhäuser, R., Arlt, R., Pfitzner, E., Richter, S.: 2015, Newly found sunspot observations by Peter Becker from Rostock for 1708, 1709, and 1710. Astron. Nachr. 336, 623. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Owens, M.J., Cliver, E., McCracken, K.G., Beer, J., Barnard, L., Lockwood, M., Rouillard, A., Passos, D., Riley, P., Usoskin, I., Wang, Y.-M.: 2016, Near-Earth heliospheric magnetic field intensity since 1750: 1. Sunspot and geomagnetic reconstructions. J. Geophys. Res. 121, 6048. DOI. ADS. CrossRefGoogle Scholar
  33. Passos, D., Nandy, D., Hazra, S., Lopes, I.: 2014, A solar dynamo model driven by mean-field alpha and Babcock–Leighton sources: Fluctuations, grand-minima-maxima, and hemispheric asymmetry in sunspot cycles. Astron. Astrophys. 563, A18. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Pelt, J., Brooke, J., Pulkkinen, P.J., Tuominen, I.: 2000, A new interpretation of the solar magnetic cycle. Astron. Astrophys. 362, 1143. ADS. ADSGoogle Scholar
  35. Schove, D.J.: 1955, The sunspot cycle, 649 B.C. to A.D. 2000. J. Geophys. Res. 60, 127. DOI. ADSCrossRefGoogle Scholar
  36. Schove, D.J.: 1979, Sunspot turning-points and aurorae since A.D. 1510. Solar Phys. 63, 423. DOI. ADSCrossRefGoogle Scholar
  37. Senthamizh Pavai, V., Arlt, R., Diercke, A., Denker, C., Vaquero, J.M.: 2016, Sunspot group tilt angle measurements from historical observations. Adv. Space Res. 58, 1468. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Sokoloff, D., Nesme-Ribes, E.: 1994, The Maunder minimum: A mixed-parity dynamo mode? Astron. Astrophys. 288, 293. ADS. ADSGoogle Scholar
  39. Soon, W.W.-H., Yaskell, S.H.: 2003, The Maunder Minimum and the Variable Sun–Earth Connection, World Scientific, Singapore. DOI. ADS. CrossRefGoogle Scholar
  40. Svalgaard, L., Cliver, E.W.: 2010, Heliospheric magnetic field 1835 – 2009. J. Geophys. Res. 115, A09111. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Svalgaard, L., Schatten, K.H.: 2016, Reconstruction of the sunspot group number: The backbone method. Solar Phys. 291, 2653. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Tlatov, A.G., Vasil’eva, V.V., Makarova, V.V., Otkidychev, P.A.: 2014, Applying an automatic image-processing method to synoptic observations. Solar Phys. 289, 1403. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Tlatova, K.A., Vasil’eva, V.V., Tlatov, A.G.: 2017, Reconstruction of a hundred years series of solar filaments from daily observational data. Geomagn. Aeron. 57, 825. DOI. ADS. ADSCrossRefGoogle Scholar
  44. van Helden, A.: 1976, The importance of the transit of Mercury of 1631. J. Hist. Astron. 7, 1. ADS. ADSMathSciNetCrossRefGoogle Scholar
  45. Vaquero, J.M.: 2007, Historical sunspot observations: A review. Adv. Space Res. 40, 929. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Vaquero, J.M., Gallego, M.C., Usoskin, I.G., Kovaltsov, G.A.: 2011, Revisited sunspot data: A new scenario for the onset of the Maunder minimum. Astrophys. J. Lett. 731, L24. DOI. ADS. ADSCrossRefGoogle Scholar
  47. Vaquero, J.M., Svalgaard, L., Carrasco, V.M.S., Clette, F., Lefèvre, L., Gallego, M.C., Arlt, R., Aparicio, A.J.P., Richard, J.-G., Howe, R.: 2016, A revised collection of sunspot group numbers. Solar Phys. 291, 3061. DOI. ADS. ADSCrossRefGoogle Scholar
  48. Vitinskij, Y.I., Kopetskij, M., Kuklin, G.V.: 1986, Statistics of the Spot-Forming Activity of the Sun. Glavnaya Redaktsiya Fiziko-Matematicheskoj Literatury, Nauka, Moskva. zbMATHGoogle Scholar
  49. Vokhmyanin, M.V., Zolotova, N.V.: 2018, Sunspot positions and areas from observations by Galileo Galilei. Solar Phys. 293, 31. DOI. ADS. ADSCrossRefGoogle Scholar
  50. Wittmann, A.: 1978, The sunspot cycle before the Maunder minimum. Astron. Astrophys. 66, 93. ADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations