Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fourier Power Spectra of Solar Noise Storms

Abstract

We analyzed three noise storms recorded on 200 – 400 MHz Trieste Callisto radio spectra on 2 July 2012, 8 July 2012, and 16 July 2012 by the Fourier method. We divided intervals of the noise storms into five-minute intervals, and in these intervals we computed the mean Fourier spectra as a function of the wave numbers in the frequency and height-scale spaces. We found that these Fourier spectra, where the spectrum from the quiet-activity interval was subtracted, are power-law spectra. The mean power-law index of these spectra in the range \(\ln(k_{z}) = [1.8, 2.9]\) (where \(k_{z}\) is the wave number in the height-scale space) is \(-1.7\pm0.14\), \(-1.6\pm0.14\), and \(-1.5 \pm0.12\) for the 2 July 2012, the 8 July 2012, and the 16 July 2012 noise storms, respectively. It appears that as the number of Type-I bursts in the studied interval increases, the power-law index becomes closer to \(-5/3\); this is known as the Kolmogorov spectral index. The power-law index of the noise storms is very similar to that of the narrowband dm-spikes found in our previous studies. Furthermore, we found a break in the power spectra at \(\ln(k_{z}) \approx2.9\), and the mean power-law index values above this break are \(-2.9\pm0.46\), \(-3.1\pm0.65\), and \(-3.4\pm0.98\), respectively.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. Benz, A.O., Monstein, C., Meyer, H.: 2005, Callisto a new concept for solar radio spectrometers. Solar Phys. 226, 143. DOI . ADS .

  2. Elgarøy, E.Ø.: 1977, Solar Noise Storms, Pergamon Press, Oxford. ADS .

  3. Elgaroy, O., Ugland, O.: 1970, Characteristic properties of small chains of type I solar radio bursts. Astron. Astrophys. 5, 372. ADS .

  4. Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497. DOI . ADS .

  5. Gopalswamy, N., Thejappa, G., Sastry, C.V., Tlamicha, A.: 1986, Estimation of coronal magnetic fields using type-I emission. Bull. Astron. Inst. Czech. 37, 115. ADS .

  6. Iwai, K., Masuda, S., Miyoshi, Y., Tsuchiya, F., Morioka, A., Misawa, H.: 2013, Peak flux distributions of solar radio type-I bursts from highly resolved spectral observations. Astrophys. J. Lett. 768, L2. DOI . ADS .

  7. Iwai, K., Miyoshi, Y., Masuda, S., Tsuchiya, F., Morioka, A., Misawa, H.: 2014, Spectral structures and their generation mechanisms for solar radio type-I bursts. Astrophys. J. 789, 4. DOI . ADS .

  8. Kai, K., Melrose, D.B., Suzuki, S.: 1985. In: McLean, D.J., Labrum, N.R. (eds.) Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths, Cambridge University Press, Cambridge and New York, 415. ADS .

  9. Karlický, M.: 2014, Solar flares: radio and X-ray signatures of magnetic reconnection processes. Res. Astron. Astrophys. 14, 753. DOI . ADS .

  10. Karlický, M.: 2017, Chains of type-I radio bursts and drifting pulsation structures. Astron. Astrophys. 602, A122. DOI . ADS .

  11. Karlický, M., Bárta, M.: 2007, Drifting pulsating structures generated during tearing and coalescence processes in a flare current sheet. Astron. Astrophys. 464, 735. DOI . ADS .

  12. Karlický, M., Bárta, M.: 2011, Successive merging of plasmoids and fragmentation in a flare current sheet and their X-ray and radio signatures. Astrophys. J. 733, 107. DOI . ADS .

  13. Karlický, M., Jiřička, K., Sobotka, M.: 2000, Power-law spectra of 1 – 2 GHz narrowband dm-spikes. Solar Phys. 195, 165. DOI . ADS .

  14. Karlický, M., Sobotka, M., Jiřička, K.: 1996, Narrowband dm-spikes in the 2 GHz frequency range and MHD cascading waves in reconnection outflows. Solar Phys. 168, 375. DOI . ADS .

  15. Kliem, B., Karlický, M., Benz, A.O.: 2000, Solar flare radio pulsations as a signature of dynamic magnetic reconnection. Astron. Astrophys. 360, 715. ADS .

  16. Krucker, S., Benz, A.O., Aschwanden, M.J., Bastian, T.S.: 1995, Location of type I radio continuum and bursts on YOHKOH soft X-ray maps. Solar Phys. 160, 151. DOI . ADS .

  17. Mandrini, C.H., Baker, D., Démoulin, P., Cristiani, G.D., van Driel-Gesztelyi, L., Vargas Domínguez, S., Nuevo, F.A., Vásquez, A.M., Pick, M.: 2015, Parallel evolution of quasi-separatrix layers and active region upflows. Astrophys. J. 809, 73. DOI . ADS .

  18. Mercier, C., Subramanian, P., Chambe, G., Janardhan, P.: 2015, The structure of solar radio noise storms. Astron. Astrophys. 576, A136. DOI . ADS .

  19. Sarma, S.B.S.S.: 1994, Estimation of magnetic field strength from enhanced solar radio emission. Aust. J. Phys. 47, 811. ADS .

  20. Sodré, Z.A.L., Cunha-Silva, R.D., Fernandes, F.C.R.: 2015, Analysis of chains of metric solar type I bursts. Solar Phys. 290, 159. DOI . ADS .

  21. Tan, B., Mészárosová, H., Karlický, M., Huang, G., Tan, C.: 2016, Microwave type III pair bursts in solar flares. Astrophys. J. 819, 42. DOI . ADS .

Download references

Acknowledgments

This research was supported by Grants 16-13277S and 17-16447S of the Grant Agency of the Czech Republic. This work was supported by the Science Grant Agency project VEGA 2/0004/16 (Slovakia). Help of the Bilateral Mobility Projects SAV-16-03 and SAV-18-01 of the SAS and CAS is acknowledged. This article was created in the project ITMS No. 26220120029, based on the supporting operational Research and development program financed from the European Regional Development Fund. The authors are indebted to the Institute for Particle Physics and Astrophysics, ETH Zurich and FHNW Brugg/Windisch (Switzerland) as well as to the Astronomical Observatory of Trieste (OAT/INAF, host: A. Marassi) in Trieste (Italy) and the Crimean Astrophysical Observatory (CrAO, host: Yu.F. Yurovsky) in Nauchnyi (Crimea, Ukraine) for the Callisto data. This research has made use of NASA’s Astrophysics Data System.

Author information

Correspondence to Ján Rybák.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karlický, M., Rybák, J. & Monstein, C. Fourier Power Spectra of Solar Noise Storms. Sol Phys 293, 143 (2018). https://doi.org/10.1007/s11207-018-1367-5

Download citation

Keywords

  • Sun: activity
  • Sun: radio radiation