Solar Physics

, 293:136 | Cite as

First Analysis of Ground-Level Enhancement (GLE) 72 on 10 September 2017: Spectral and Anisotropy Characteristics

  • A. Mishev
  • I. Usoskin
  • O. Raukunen
  • M. Paassilta
  • E. Valtonen
  • L. Kocharov
  • R. Vainio


Using data obtained with neutron monitors and space-borne instruments, we analyzed the second ground-level enhancement (GLE) of Solar Cycle 24, namely the event of 10 September 2017 (GLE 72), and derived the spectral and angular characteristics of associated GLE particles. We employed a new neutron-monitor yield function and a recently proposed model based on an optimization procedure. The method consists of simulating particle propagation in a model magnetosphere in order to derive the cutoff rigidity and neutron-monitor asymptotic directions. Subsequently, the rigidity spectrum and anisotropy of GLE particles are obtained in their dynamical evolution during the event on the basis of an inverse-problem solution. The derived angular distribution and spectra are discussed briefly.


Solar cosmic rays Energetic particles Protons 



This work was supported by the Academy of Finland (project No. 272157, Center of Excellence ReSoLVE and project No. 267186). Operation of the DOMC/DOMB NM was possible due to support of the French–Italian Concordia Station (IPEV program n903 and PNRA Project LTCPAA PNRA14 00091), projects CRIPA and CRIPA-X No. 304435 and Finnish Antarctic Research Program (FINNARP). We acknowledge NMDB and all of the colleagues and PIs from the neutron monitor stations who kindly provided the data used in this analysis, namely Alma Ata, Apatity, Athens, Baksan, Dome C, Dourbes, Forth Smith, Inuvik, Irkutsk, Jang Bogo, Jungfraujoch, Kerguelen, Lomnicky Štit, Magadan, Mawson, Mexico City, Moscow, Nain, Newark, Oulu, Peawanuck, Potchefstroom, Rome, South Pole, Terre Adelie, Thule, Tixie.

Disclosure and Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Agueda, N., Vainio, R., Sanahuja, B.: 2012, A database of \({>}\,20~\mbox{keV}\) electron Green’s functions of interplanetary transport at 1 AU. Astrophys. J. Suppl. 202, 18. DOI. ADSCrossRefGoogle Scholar
  2. Aschwanden, M.: 2012, GeV particle acceleration in solar flares and ground level enhancement (GLE) events. Space Sci. Rev. 171(1–4), 3. DOI. ADSCrossRefGoogle Scholar
  3. Bieber, J.W., Evenson, P.A.: 1995, Spaceship Earth – an optimized network of neutron monitors. In: Taroni, A. (ed.) Proc. 24th ICRC 4 1316. Google Scholar
  4. Bieber, J.W., Clem, J., Evenson, P., Pyle, R., Sáiz, A., Ruffolo, D.: 2013, Giant ground level enhancement of relativistic solar protons on 2005 January 20. I. Spaceship Earth observations. Astrophys. J. 771(2), 92. DOI. ADSCrossRefGoogle Scholar
  5. Bombardieri, D.J., Duldig, M.L., Michael, K.J., Humble, J.E.: 2006, Relativistic proton production during the 2000 July 14 solar event: The case for multiple source mechanisms. Astrophys. J. 644(1), 565. DOI. ADSCrossRefGoogle Scholar
  6. Bütikofer, R., Flückiger, E.O., Desorgher, L., Moser, M.R., Pirard, B.: 2009, The solar cosmic ray ground-level enhancements on 20 January 2005 and 13 December 2006. Adv. Space Res. 43(4), 499. DOI. ADSCrossRefGoogle Scholar
  7. Caballero-Lopez, R.A.: 2016, An estimation of the yield and response functions for the mini neutron monitor. J. Geophys. Res. 121(8), 7461. DOI. CrossRefGoogle Scholar
  8. Cliver, E.W., Kahler, S.W., Reames, D.V.: 2004, Coronal shocks and solar energetic proton events. Astrophys. J. 605, 902. DOI ADSCrossRefGoogle Scholar
  9. Cooke, D.J., Humble, J.E., Shea, M.A., Smart, D.F., Lund, N., Rasmussen, I.L., Byrnak, B., Goret, P., Petrou, N.: 1991, On cosmic-ray cutoff terminology. Nuovo Cimento C 14(3), 213. DOI. ADSCrossRefGoogle Scholar
  10. Cramp, J.L., Humble, J.E., Duldig, M.L.: 1995, The cosmic ray ground-level enhancement of 24 October 1989. Proc. Astron. Soc. Austral. 11, 28. ADSCrossRefGoogle Scholar
  11. Cramp, J.L., Duldig, M.L., Flückiger, E.O., Humble, J.E., Shea, M.A., Smart, D.F.: 1997, The October 22, 1989, solar cosmic enhancement: Ray an analysis the anisotropy spectral characteristics. J. Geophys. Res. 102(A11), 24237. DOI. ADSCrossRefGoogle Scholar
  12. Debrunner, H., Flückiger, E.O., Grädel, H., Lockwood, J.A., McGuire, R.E.: 1988, Observations related to the acceleration, injection, and interplanetary propagation of energetic protons during the solar cosmic ray event on February 16, 1984. J. Geophys. Res. 93(A7), 7206. ADSCrossRefGoogle Scholar
  13. Dennis, J.E., Schnabel, R.B.: 1996, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs. 978-0-898713-64-0. CrossRefGoogle Scholar
  14. Desai, M.I., Burgess, D.: 2008, Particle acceleration at coronal mass ejection-driven interplanetary shocks and the Earth’s bow shock. J. Geophys. Res. 113(A9), A00B006. DOI. CrossRefGoogle Scholar
  15. Desai, M., Giacalone, J.: 2016, Large gradual solar energetic particle events. Living Rev. Solar Phys. 13, 3. DOI. ADSCrossRefGoogle Scholar
  16. Desorgher, L., Flückiger, E.O., Gurtner, M., Moser, M.R., Bütikofer, R.: 2005, A Geant 4 code for computing the interaction of cosmic rays with the Earth’s atmosphere. Int. J. Mod. Phys. A 20, 6802. DOI. ADSCrossRefGoogle Scholar
  17. Dorman, L.: 2004, Cosmic Rays in the Earth’s Atmosphere and Underground, Kluwer, Dordrecht. 1-4020-2071-6. CrossRefGoogle Scholar
  18. Drake, J.F., Cassak, P.A., Shay, M.A., Swisdak, M., Quataert, E.: 2009, A magnetic reconnection mechanism for ion acceleration and abundance enhancements in impulsive flares. Astrophys. J. 700, L16. DOI. ADSCrossRefGoogle Scholar
  19. Gil, A., Usoskin, I.G., Kovaltsov, G.A., Mishev, A.L., Corti, C., Bindi, V.: 2015, Can we properly model the neutron monitor count rate? J. Geophys. Res. 120, 7172. DOI. CrossRefGoogle Scholar
  20. Gopalswamy, N., Xie, H., Yashiro, S., Akiyama, S., Mäkelä, P., Usoskin, I.G.: 2012, Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci. Rev. 171(1–4), 23. DOI. ADSCrossRefGoogle Scholar
  21. Gopalswamy, N., Xie, H., Akiyama, S., Mäkelä, P.A., Yashiro, S.: 2014, Major solar eruptions and high-energy particle events during solar cycle 24. Earth Planets Space 66(1), 104. DOI. Cited by 32. ADSCrossRefGoogle Scholar
  22. Hatton, C.: 1971, The neutron monitor. In: Progress in Elementary Particle and Cosmic-ray Physics X, North-Holland, Amsterdam. Chapter 1. Google Scholar
  23. Himmelblau, D.M.: 1972, Applied Nonlinear Programming, McGraw-Hill, New York. 978-0070289215. zbMATHGoogle Scholar
  24. Humble, J.E., Duldig, M.L., Smart, D.F., Shea, M.A.: 1991, Detection of 0.5 – 15 GeV solar protons on 29 September 1989 at Australian stations. Geophys. Res. Lett. 18(4), 737. DOI. ADSCrossRefGoogle Scholar
  25. Kallenrode, M.-B., Cliver, E.W., Wibberenz, G.: 1992, Composition and azimuthal spread of solar energetic particles from impulsive and gradual flares. Astrophys. J. 391(1), 370. ADSCrossRefGoogle Scholar
  26. Kocharov, L., Pohjolainen, S., Mishev, A., Reiner, M.J., Lee, J., Laitinen, T., Didkovsky, L.V., Pizzo, V.J., Kim, R., Klassen, A., Karlicky, M., Cho, K.-S., Gary, D.E., Usoskin, I., Valtonen, E., Vainio, R.: 2017, Investigating the origins of two extreme solar particle events: Proton source profile and associated electromagnetic emissions. Astrophys. J. 839(2), 79. DOI. ADSCrossRefGoogle Scholar
  27. Kudela, K., Bučik, R., Bobik, P.: 2008, On transmissivity of low energy cosmic rays in disturbed magnetosphere. Adv. Space Res. 42(7), 1300. ADSCrossRefGoogle Scholar
  28. Kudela, K., Usoskin, I.: 2004, On magnetospheric transmissivity of cosmic rays. Czechoslov. J. Phys. 54(2), 239. ADSCrossRefGoogle Scholar
  29. Langel, R.A.: 1987, Main field in geomagnetism. In: Jacobs, J.A. (ed.) Geomagnetism, Academic Press, London, 249. Chapter 1. Google Scholar
  30. Lara, A., Borgazzi, A., Caballero-Lopez, R.: 2016, Altitude survey of the galactic cosmic ray flux with a mini neutron monitor. Adv. Space Res. 58(7), 1441. DOI. ADSCrossRefGoogle Scholar
  31. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275(1–2), 17. DOI. ADSCrossRefGoogle Scholar
  32. Levenberg, K.: 1944, A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164. MathSciNetCrossRefGoogle Scholar
  33. Li, G., Moore, R., Mewaldt, R.A., Zhao, L., Labrador, A.W.: 2012, A twin-CME scenario for ground level enhancement events. Space Sci. Rev. 171(1–4), 141. ADSCrossRefGoogle Scholar
  34. Lockwood, J.A., Debrunner, H., Flückiger, E.O.: 1990, Indications for diffusive coronal shock acceleration of protons in selected solar cosmic ray events. J. Geophys. Res. 95(A4), 4187. ADSCrossRefGoogle Scholar
  35. Mangeard, P.-S., Ruffolo, D., Sáiz, A., Nuntiyakul, W., Bieber, J.W., Clem, J., Evenson, P., Pyle, R., Duldig, M.L., Humble, J.E.: 2016, Dependence of the neutron monitor count rate and time delay distribution on the rigidity spectrum of primary cosmic rays. J. Geophys. Res. 121(12), 11620. DOI. CrossRefGoogle Scholar
  36. Marquardt, D.: 1963, An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11(2), 431. MathSciNetCrossRefGoogle Scholar
  37. Mavrodiev, S.C., Mishev, A.L., Stamenov, J.N.: 2004, A method for energy estimation and mass composition determination of primary cosmic rays at the Chacaltaya observation level based on the atmospheric Cherenkov light technique. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 530(3), 359. DOI. ADSCrossRefGoogle Scholar
  38. Mavromichalaki, H., Papaioannou, A., Plainaki, C., Sarlanis, C., Souvatzoglou, G., Gerontidou, M., Papailiou, M., Eroshenko, E., Belov, A., Yanke, V., Flückiger, E.O., Bütikofer, R., Parisi, M., Storini, M., Klein, K.-L., Fuller, N., Steigies, C.T., Rother, O.M., Heber, B., Wimmer-Schweingruber, R.F., Kudela, K., Strharsky, I., Langer, R., Usoskin, I., Ibragimov, A., Chilingaryan, A., Hovsepyan, G., Reymers, A., Yeghikyan, A., Kryakunova, O., Dryn, E., Nikolayevskiy, N., Dorman, L., Pustil’Nik, L.: 2011, Applications and usage of the real-time neutron monitor database. Adv. Space Res. 47, 2210. ADSCrossRefGoogle Scholar
  39. Mishev, A.L., Kocharov, L.G., Usoskin, I.G.: 2014, Analysis of the ground level enhancement on 17 May 2012 using data from the global neutron monitor network. J. Geophys. Res. 119, 670. DOI. CrossRefGoogle Scholar
  40. Mishev, A., Poluianov, S., Usoskin, I.: 2017, Assessment of spectral and angular characteristics of sub-GLE events using the global neutron monitor network. J. Space Weather Space Clim. 7, A28. DOI. ADSCrossRefGoogle Scholar
  41. Mishev, A., Usoskin, I.: 2016a, Analysis of the ground level enhancements on 14 July 2000 and on 13 December 2006 using neutron monitor data. Solar Phys. 291, 1225. DOI. ADSCrossRefGoogle Scholar
  42. Mishev, A., Usoskin, I.: 2016b, Erratum to: Analysis of the ground level enhancements on 14 July 2000 and on 13 December 2006 using neutron monitor data. Solar Phys. 291, 1579. DOI. ADSCrossRefGoogle Scholar
  43. Mishev, A., Usoskin, I., Kocharov, L.: 2017, Using global neutron monitor network data for GLE analysis: Recent results. In: Proc. 35th ICRC, 147. DOI. CrossRefGoogle Scholar
  44. Mishev, A., Usoskin, I., Kovaltsov, G.: 2013, Neutron monitor yield function: New improved computations. J. Geophys. Res. 118, 2783. DOI. CrossRefGoogle Scholar
  45. Mishev, A., Usoskin, I., Kovaltsov, G.: 2016, New neutron monitor yield function computed at several altitudes above the sea level: Application for GLE analysis. In: Proc. 34th ICRC, 159. DOI. CrossRefGoogle Scholar
  46. Moraal, H., McCracken, K.G.: 2012, The time structure of ground level enhancements in solar cycle 23. Space Sci. Rev. 171(1–4), 85. ADSCrossRefGoogle Scholar
  47. Nevalainen, J., Usoskin, I., Mishev, A.: 2013, Eccentric dipole approximation of the geomagnetic field: Application to cosmic ray computations. Adv. Space Res. 52(1), 22. DOI. ADSCrossRefGoogle Scholar
  48. Papaioannou, A., Souvatzoglou, G., Paschalis, P., Gerontidou, M., Mavromichalaki, H.: 2014, The first ground-level enhancement of solar cycle 24 on 17 May 2012 and its real-time detection. Solar Phys. 289, 423. DOI. ADSCrossRefGoogle Scholar
  49. Reames, D.V.: 1999, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90(3–4), 413. ADSCrossRefGoogle Scholar
  50. Reames, D.V.: 2013, The two sources of solar energetic particles. Space Sci. Rev. 175(1–4), 53. DOI. ADSCrossRefGoogle Scholar
  51. Ruffolo, D., Tooprakai, P., Rujiwarodom, M., Khumlumlert, T., Wechakama, M., Bieber, J.W., Evenson, P.A., Pyle, K.R.: 2006, Relativistic solar protons on 1989 October 22: Injection and transport along both legs of a closed interplanetary magnetic loop. Astrophys. J. 639(2), 1186. DOI. ADSCrossRefGoogle Scholar
  52. Shea, M.A., Smart, D.F.: 1982, Possible evidence for a rigidity-dependent release of relativistic protons from the solar corona. Space Sci. Rev. 32, 251. ADSGoogle Scholar
  53. Shea, M.A., Smart, D.F.: 1990, A summary of major solar proton events. Solar Phys. 127, 297. DOI. ADS. ADSCrossRefGoogle Scholar
  54. Simpson, J., Fonger, W., Treiman, S.: 1953, Cosmic radiation intensity-time variation and their origin. I. Neutron intensity variation method and meteorological factors. Phys. Rev. 90, 934. ADSCrossRefGoogle Scholar
  55. Souvatzoglou, G., Papaioannou, A., Mavromichalaki, H., Dimitroulakos, J., Sarlanis, C.: 2014, Optimizing the real-time ground level enhancement alert system based on neutron monitor measurements: Introducing GLE Alert Plus. Space Weather 12(11), 633. DOI. ADSCrossRefGoogle Scholar
  56. Stoker, P.H., Dorman, L.I., Clem, J.M.: 2000, Neutron monitor design improvements. Space Sci. Rev. 93(1–2), 361. ADSCrossRefGoogle Scholar
  57. Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: 1995, Numerical Methods for Solving Ill-Posed Problems, Kluwer, Dordrecht. 978-90-481-4583-6. CrossRefGoogle Scholar
  58. Tsyganenko, N.A.: 1989, A magnetospheric magnetic field model with a warped tail current sheet. Planet. Space Sci. 37(1), 5. ADSCrossRefGoogle Scholar
  59. Tylka, A., Dietrich, W.: 2009, A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events. In: Proc. of 31th ICRC, 0273. Google Scholar
  60. Vainio, R., Valtonen, E., Heber, B., Malandraki, O.E., Papaioannou, A., Klein, K.-L., Afanasiev, A., Agueda, N., Aurass, H., Battarbee, M., Braune, S., Dröge, W., Ganse, U., Hamadache, C., Heynderickx, D., Huttunen-Heikinmaa, K., Kiener, J., Kilian, P., Kopp, A., Kouloumvakos, A., Maisala, S., Mishev, A., Miteva, R., Nindos, A., Oittinen, T., Raukunen, O., Riihonen, E., Rodríguez-Gasén, R., Saloniemi, O., Sanahuja, B., Scherer, R., Spanier, F., Tatischeff, V., Tziotziou, K., Usoskin, I.G., Vilmer, N.: 2013, The first SEPserver event catalogue \({\sim}\,68\mbox{-MeV}\) solar proton events observed at 1 AU in 1996 – 2010. J. Space Weather Space Clim. 3, A12. DOI. CrossRefGoogle Scholar
  61. Vainio, R., Raukunen, O., Tylka, A.J., Dietrich, W.F., Afanasiev, A.: 2017, Why is solar cycle 24 an inefficient producer of high-energy particle events? Astron. Astrophys. 604, A47. DOI. ADSCrossRefGoogle Scholar
  62. Vashenyuk, E.V., Balabin, Y.V., Perez-Peraza, J., Gallegos-Cruz, A., Miroshnichenko, L.I.: 2006, Some features of the sources of relativistic particles at the Sun in the solar cycles 21 – 23. Adv. Space Res. 38(3), 411. ADSCrossRefGoogle Scholar
  63. Vashenyuk, E.V., Balabin, Y.V., Gvozdevsky, B.B., Schur, L.I.: 2008, Characteristics of relativistic solar cosmic rays during the event of December 13, 2006. Geomagn. Aeron. 48(2), 149. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Space Climate Research UnitUniversity of OuluOuluFinland
  2. 2.Sodankylä Geophysical Observatory (Oulu unit)University of OuluOuluFinland
  3. 3.Department of Physics and AstronomyUniversity of TurkuTurkuFinland

Personalised recommendations