Advertisement

Solar Physics

, 293:127 | Cite as

Magnetic Lasso: A New Kinematic Solar Wind Propagation Method

Magnetic Lasso Propagation
  • M. DósaEmail author
  • A. Opitz
  • Z. Dálya
  • K. Szegő
Article

Abstract

Solar wind propagation from the point of measurement to an arbitrary target in the heliosphere is an important input for heliospheric, planetary and cometary studies. In this paper a new kinematic propagation method, the magnetic lasso method is presented. Compared to the simple ballistic approach our method is based on reconstructing the ideal Parker spiral connecting the target with the Sun by testing a previously defined range of heliographic longitudes. The model takes into account the eventual evolution of stream–stream interactions and handles these with a simple model based on the dynamic pressure difference between the two streams. Special emphasis is given to input data cleaning by handling interplanetary coronal mass ejection events as data gaps due to their different propagation characteristics. The solar wind bulk velocity is considered radial and constant. Density and radial magnetic field are propagated by correcting with the inverse square of the radial distance. The model has the advantage that it can be coded easily and fitted to the problem; it is flexible in selecting and handling input data and requires little running time.

Notes

Acknowledgements

We thank K.C. Hansen and B. Zieger for providing solar wind propagations from their Michigan Solar Wind Model ( http://mswim.engin.umich.edu/ ). We also thank Géza Erdős, Zoltán Németh and Gábor Facskó for useful discussions, Klaudia Szabó, Anikó Timár and Lajos Földy for technical assistance. We acknowledge Elena Budnik and all the staff of CDPP and IC for the use of the AMDA database, supported by CNRS, CNES, Observatoire de Paris and Université Paul Sabatier, Toulouse. The authors acknowledge the MEX IMA Experiment team and the OMNI database team for available data.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. Space Phys. 105(A5), 10465. DOI. ADSCrossRefGoogle Scholar
  2. Barabash, S., Lundin, R., Andersson, H., Brinkfeldt, K., Grigoriev, A., Gunell, H., Holmstrom, M., Yamauchi, M., Asamura, K., Bochsler, P., et al.: 2006, The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express mission. Space Sci. Rev. 126, 113. DOI. ADSCrossRefGoogle Scholar
  3. Desch, M.D., Rucker, H.O.: 1983, The relationship between Saturn kilometric radiation and the solar wind. NASA Technical report, NASA-TM-85004, NAS 1.15:85004. Google Scholar
  4. Erdős, G., Balogh, A.: 2010, North–South asymmetry of the location of the heliospheric current sheet revisited. J. Geophys. Res. Space Phys. 115, A01105. DOI. ADSCrossRefGoogle Scholar
  5. Facskó, G., Honkonen, I., Zivkovic, T., Palin, L., Kallio, E., Agren, K., Opgenoorth, H., Tanskanen, E.I., Milan, S.: 2016, One year in the Earth’s magnetosphere: a global MHD simulation and spacecraft measurements. Space Weather 14, 351. DOI. ADSCrossRefGoogle Scholar
  6. Gordeev, E., Facskó, G., Sergeev, V., Honkonen, I., Palmroth, M., Janhunen, P., Milan, S.: 2013, Verification of the GUMICS-4 global MHD code using empirical relationships. J. Geophys. Res. Space Phys. 118, 3138. DOI. ADSCrossRefGoogle Scholar
  7. Hoeksema, J.T., Wilcox, J.N., Scherrer, P.H.: 1983, The structure of the heliospheric current sheet: 1978–1982. J. Geophys. Res. Space Phys. 88, 9910. DOI. ADSCrossRefGoogle Scholar
  8. Hundhausen, A.J.: 1985, Some macroscopic properties of Shock waves in the heliosphere. In: Stone, e.R.G., Tsurutani, B.T. (eds.) Collisionless Shocks in the Heliosphere: A Tutorial Review, American Geophysical Union, Washington DOI. CrossRefGoogle Scholar
  9. Janhunen, P., Palmroth, M., Laitinen, T., Honkonen, I., Juusola, L., Facskó, G., Pulkkinen, T.I.: 2012, The GUMICS-4 global MHD magnetosphere-ionosphere coupling simulation. J. Atmos. Solar-Terr. Phys. 80, 48. DOI. ADSCrossRefGoogle Scholar
  10. Juusola, L., Facskó, G., Honkonen, I., Janhunen, P., Vanhamäki, H., Kauristie, K., Laitinen, T.V., Milan, S.E., Palmroth, M., Tanskanen, E.I., Viljanen, A.: 2014, Statistical comparison of seasonal variations in the GUMICS-4 global MHD model ionosphere and measurements. Space Weather 12, 582. DOI. ADSCrossRefGoogle Scholar
  11. Kahler, S.W., Arge, C.N., Smith, D.A.: 2016, Using the WSA model to test the Parker spiral approximation for SEP event magnetic connections. Solar Phys. 291, 1829. DOI. ADSCrossRefGoogle Scholar
  12. Kallio, E., Facskó, G.: 2015, Properties of plasma near the moon in the magnetotail, 2015. Planet. Space Sci. 115, 69. DOI. ADSCrossRefGoogle Scholar
  13. Lee, C.O., Luhmann, J.G., Hoeksema, J.T., Sun, X., Arge, C.N., de Pater, I.: 2011, Coronal field opens at lower height during the solar cycles 22 and 23 minimum periods: IMF comparison suggests the source surface should be lowered. Solar Phys. 269, 367. DOI. ADSCrossRefGoogle Scholar
  14. Mottez, F., Chanteur, G.: 1994, Surface crossing by a group of satellites: a theoretical study. J. Geophys. Res. Space Phys. 99, 13499. ADSCrossRefGoogle Scholar
  15. Nolte, J.T., Roelof, E.C.: 1973, Large-scale structure of the interplanetary medium I. Solar Phys. 33, 483. DOI. ADSCrossRefGoogle Scholar
  16. Odstrcil, D., Riley, P., Zhao, X.P.: 2004, Numerical simulation of the 12 May 1997 interplanetary CME event. J. Geophys. Res. Space Phys. 109, A02116. DOI. ADSCrossRefGoogle Scholar
  17. Opitz, A., Fedorov, A., Wurz, P., et al.: 2010, Solar-wind bulk velocity throughout the inner heliosphere from multi-spacecraft measurements. Solar Phys. 264, 377. DOI. ADSCrossRefGoogle Scholar
  18. Opitz, A., Karrer, R., Wurz, P., et al.: 2009, Temporal evolution of the solar wind bulk velocity at solar minimum by correlating the STEREO A and B PLASTIC measurements. Solar Phys. 256, 365. DOI. ADSCrossRefGoogle Scholar
  19. Owens, M.J., Forsyth, R.J.: 2013, The heliospheric magnetic field. Living Rev. Solar Phys. 10, 5. DOI. ADSCrossRefGoogle Scholar
  20. Parker, E.N.: 1965, Dynamical theory of the solar wind. Space Sci. Rev. 4(5–6), 666. DOI. ADSCrossRefGoogle Scholar
  21. Pomoell, J., Poedts, S.: 2018, EUHFORIA: European heliospheric forecasting information asset. J. Space Weather Space Clim. 8, 14. DOI. CrossRefGoogle Scholar
  22. Riley, P., Linker, J.A., Mikić, Z.: 2001, An empirically-driven global MHD model of the solar corona and inner heliosphere. J. Geophys. Res. Space Phys. 106(A8), 15889. DOI. ADSCrossRefGoogle Scholar
  23. Riley, P., Lionello, R.: 2011, Mapping solar wind streams from the sun to 1 AU: a comparison of techniques. Solar Phys. 270, 575. DOI. ADSCrossRefGoogle Scholar
  24. Schatten, K.H., Ness, N.F., Wilcox, J.M.: 1968, Influence of a solar active region on the interplanetary magnetic field. Solar Phys. 5, 240. DOI. ADSCrossRefGoogle Scholar
  25. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442. DOI. ADSCrossRefGoogle Scholar
  26. Schulte in den Bäumen, H., Cairns, I.H., Robinson, P.A.: 2011, Modeling 1 AU solar wind observations to estimate azimuthal magnetic fields at the solar source surface. Geophys. Res. Lett. 38, L24101. DOI. ADSCrossRefGoogle Scholar
  27. Tao, C., Kataoka, R., Fukunishi, H., Takahashi, Y., Yokoyama, T.: 2005, Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements. J. Geophys. Res. Space Phys. 110, A11208. DOI. ADSCrossRefGoogle Scholar
  28. Taylor, M.G.G.T., Alexander, C., Altobelli, N., Fulle, M., Fulchignoni, M., Grün, E., Weissman, P.: 2015, Rosetta begins its comet tale. Science 347(6220), 387. DOI. ADSCrossRefGoogle Scholar
  29. Timar, A., Nemeth, Z., Szego, K., Dosa, M., Opitz, A., Madanian, H., Goetz, C., Richter, I.: 2017, Modelling the size of the very dynamic diamagnetic cavity of comet 67P/Churyumov–Gerasimenko. Mon. Not. Roy. Astron. Soc. 469(Suppl 2), S723. DOI. ADSCrossRefGoogle Scholar
  30. Vennerstrom, S., Olsen, N., Purucker, M., Acuña, M.H., Cain, J.C.: 2003, The magnetic field in the pile-up region at Mars, and its variation with the solar wind. Geophys. Res. Lett. 30, 1369. DOI. ADSCrossRefGoogle Scholar
  31. Volwerk, M., Richter, I., Tsurutani, B., Götz, C., Altwegg, K., Broiles, T., et al.: 2016, Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov–Gerasimenko. Ann. Geophys. 34(1), 1. DOI. ADSCrossRefGoogle Scholar
  32. Vörös, Z., Facskó, G., Khodachenko, M., Honkonen, I., Janhunen, P., Palmroth, M.: 2014, Windsock memory conditioned RAM (CO-RAM) pressure effect: forced reconnection in the Earth’s magnetotail. J. Geophys. Res. Space Phys. 119, 6273. DOI. ADSCrossRefGoogle Scholar
  33. Wang, Y.M., Sheeley, N.R. Jr.: 1990, Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726. DOI. ADSCrossRefGoogle Scholar
  34. Zieger, B., Hansen, K.C.: 2008, Statistical validation of a solar wind propagation model from 1 to 10 AU. J. Geophys. Res. Space Phys. 113, A08107. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department for Space Physics and Space Technology, Institute for Particle and Nuclear Physics, Wigner Research Centre for PhysicsHungarian Academy of SciencesBudapestHungary
  2. 2.Department of Astronomyof the Eötvös Loránd UniversityBudapestHungary

Personalised recommendations