Advertisement

Solar Physics

, 293:121 | Cite as

The New SCIAMACHY Reference Solar Spectral Irradiance and Its Validation

  • T. HilbigEmail author
  • M. WeberEmail author
  • K. Bramstedt
  • S. Noël
  • J. P. Burrows
  • J. M. Krijger
  • R. Snel
  • M. Meftah
  • L. Damé
  • S. Bekki
  • D. Bolsée
  • N. Pereira
  • D. Sluse
Article

Abstract

This paper describes a new reference solar spectrum retrieved from measurements of the satellite instrument SCIAMACHY in the wavelength region from \(0.24~\upmu\mbox{m}\) to \(2.4~\upmu\mbox{m}\) and its comparison with several other established solar reference spectra. The SCIAMACHY reference spectrum was recorded early in the mission before substantial optical degradation due to the harsh space environment sets in. The radiometric calibration of SCIAMACHY, applied in this study, includes a physical model of the scanner unit. Furthermore, SCIAMACHY’s internal white light source (WLS) is used to correct for on-ground to in-flight changes. The resultant calibrated solar spectrum from SCIAMACHY is in good agreement with several available solar spectral irradiance (SSI) references in the visible spectral range. Strong throughput losses due to detector icing in the near infrared (NIR) are now adequately accounted for. Nevertheless, a deficit with respect to the ATLAS-3 composite and SORCE/SIM SSI is observed in the NIR. However, the SCIAMACHY solar reference spectrum agrees well with the recently re-evaluated SOLAR/SOLSPEC-ISS and recent ground measurements taken at Mauna Loa in the NIR.

Keywords

Solar irradiance Spectrum SCIAMACHY Instrumentation and data management 

Notes

Acknowledgements

SCIAMACHY is a national contribution to the ESA Envisat project, funded by Germany, The Netherlands, and Belgium. The authors thank ESA for providing the SCIAMACHY data and the SCIAMACHY Quality Working Group for their work on SCIAMACHY level 1 data. The support from the ESA SCILOV-15, EU SOLID projects, the SCIASOL project under the BMBF priority programme ROMIC (Role of the Middle Atmosphere in Climate), and the University of Bremen is gratefully acknowledged. The work by M. Meftah, L. Damé and S. Bekki was supported by the project ‘SOLSPEC’ from the Centre National d’Etudes Spatiales (CNES).

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Arvesen, J.C., Griffin, R.N. Jr., Pearson, B.D. Jr.: 1969, Determination of extraterrestrial solar spectral irradiance from a research aircraft. Appl. Opt. 8, 2215. DOI. ADSCrossRefGoogle Scholar
  2. Bolsée, D., Pereira, N., Decuyper, W., Gillotay, D., Yu, H., Sperfeld, P., Pape, S., Cuevas, E., Redondas, A., Hernandéz, Y., Weber, M.: 2014, Accurate determination of the TOA solar spectral NIR irradiance using a primary standard source and the Bouguer–Langley technique. Solar Phys. 289(7), 2433. DOI. ADSCrossRefGoogle Scholar
  3. Bolsée, D., Pereira, N., Cuevas, E., García, R., Redondas, A.: 2016, Comments to the article by Thuillier et al. “The infrared solar spectrum measured by the SOLSPEC Spectrometer onboard the International Space Station” on the interpretation of ground-based measurements at the Izaña site. Solar Phys. 291(8), 2473. DOI. ADSCrossRefGoogle Scholar
  4. Bolsée, D., Pereira, N., Gillotay, D., Pandey, P., Cessateur, G., Foujols, T., Bekki, S., Hauchecorne, A., Meftah, M., Damé, L., Hersé, M., Michel, A., Jacobs, C., Sela, A.: 2017, SOLAR/SOLSPEC mission on ISS: In-flight performance for SSI measurements in the UV. Astron. Astrophys. 600, A21. DOI. ADSCrossRefGoogle Scholar
  5. Bovensmann, H., Burrows, J.P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V.V., Chance, K.V., Goede, A.P.H.: 1999, SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci. 56(2), 127. DOI. ADSCrossRefGoogle Scholar
  6. Bovensmann, H., Ahlers, B., Buchwitz, M., Frerick, J., Gottwald, M., Hoogeveen, R., Kaiser, J.W., Kleipool, Q., Krieg, E., Lichtenberg, G., Mager, R., Meyer, J., Noël, S., Schlesier, A., Sioris, C., Skupin, J., von Savigny, C., Wuttke, M.W., Burrows, J.P.: 2002, SCIAMACHY in-flight instrument performance. In: Proceedings of the Envisat Calibration Review, ESA Special Publication 520, Noordwijk, The Netherlands. Google Scholar
  7. Bovensmann, H., Aben, I., van Roozendael, M., Kühl, S., Gottwald, M., von Savigny, C., Buchwitz, M., Richter, A., Frankenberg, C., Stammes, P., de Graaf, M., Wittrock, F., Sinnhuber, M., Sinnhuber, B.-M., Schönhardt, A., Beirle, S., Gloudemans, A., Schrijver, H., Bracher, A., Rozanov, A.V., Weber, M., Burrows, J.P.: 2011, SCIAMACHY’s view of the changing Earth’s environment, 175. Chapter 10. (See Gottwald and Bovensmann, 2011.) Google Scholar
  8. Bramstedt, K., Noël, S., Bovensmann, H., Burrows, J.P., Lerot, C., Tilstra, L.G., Lichtenberg, G., Dehn, A., Fehr, T.: 2009, SCIAMACHY monitoring factors: Observation and end-to-end correction of instrument performance degradation. In: Atmospheric Science Conference, Barcelona, Spain, 7–11 September 2009, ESA Special Publication 676. Google Scholar
  9. Brueckner, G.E., Edlow, K.L., Floyd, L.E., Lean, J.L., VanHoosier, M.E.: 1993, The Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) experiment on board the Upper Atmosphere Research Satellite (UARS). J. Geophys. Res. 98, 10695. DOI. ADSCrossRefGoogle Scholar
  10. Burrows, J.P., Hölzle, E., Goede, A.P.H., Visser, H., Fricke, W..: 1995, SCIAMACHY – Scanning Imaging Absorption Spectrometer for atmospheric chartography. Acta Astronaut. 35(7), 445. Earth Observation. DOI. ADSCrossRefGoogle Scholar
  11. Cebula, R.P., Thuillier, G.O., VanHoosier, M.E., Hilsenrath, E., Herse, M., Brueckner, G.E., Simon, P.C.: 1996, Observations of the solar irradiance in the 200 – 350 nm interval during the ATLAS-1 Mission: A comparison among three sets of measurements – SSBUV, SOLSPEC, and SUSIM. Geophys. Res. Lett. 23(17), 2289. DOI. ADSCrossRefGoogle Scholar
  12. Chance, K., Kurucz, R.L.: 2010, An improved high-resolution solar reference spectrum for Earth’s atmosphere measurements in the ultraviolet, visible, and near infrared. J. Quant. Spectrosc. Radiat. Transf. 111, 1289. DOI. ADSCrossRefGoogle Scholar
  13. Chehade, W., Weber, M., Burrows, J.P.: 2014, Total ozone trends and variability during 1979 – 2012 from merged data sets of various satellites. Atmos. Chem. Phys. 14(13), 7059. DOI. ADSCrossRefGoogle Scholar
  14. DeLand, M.: 2014, Use of solar reference spectra for satellite instruments. GSICS Q. 8(2), 6. DOI. Google Scholar
  15. DeLand, M.T., Taylor, S.L., Huang, L.K., Fisher, B.L.: 2012, Calibration of the SBUV version 8.6 ozone data product. Atmos. Meas. Tech. 5, 2951. DOI. CrossRefGoogle Scholar
  16. Dobber, M.: 1999, Absolute radiometric calibration of the SCIAMACHY PFM. Technical Report TN-SCIA-1000TP/190, 15 Feb 1999, SCIAMACHY Joint Team FS-TPD-SRON. Google Scholar
  17. Dobber, M., Voors, R., Dirksen, R., Kleipool, Q., Levelt, P.: 2008, The high-resolution solar reference spectrum between 250 and 550 nm and its application to measurements with the Ozone Monitoring Instrument. Solar Phys. 249(2), 281. DOI. ADSCrossRefGoogle Scholar
  18. Elsey, J., Coleman, M.D., Gardiner, T., Shine, K.P.: 2017, Can measurements of the near-infrared solar spectral irradiance be reconciled? A new ground-based assessment between 4,000 and \(10{,}000~\mbox{cm}^{-1}\). Geophys. Res. Lett. 44(19), 10071. DOI. ADSCrossRefGoogle Scholar
  19. Ermolli, I., Matthes, K., Dudok de Wit, T., Krivova, N.A., Tourpali, K., Weber, M., Unruh, Y.C., Gray, L., Langematz, U., Pilewskie, P., Rozanov, E., Schmutz, W., Shapiro, A., Solanki, S.K., Woods, T.N.: 2013, Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. 13(8), 3945. DOI. ADSCrossRefGoogle Scholar
  20. Floyd, L., Rottman, G., Deland, M., Pap, J.: 2003, 11 years of solar UV irradiance measurements from UARS. In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s Environment, ESA Special Publication 535, 195. ADS. Google Scholar
  21. Gibson, C.E.: 1997, Report of calibration 39045C spectral irradiance of quartz-halogen lamp. Technical Report 27 Feb 1997, National Institute of Standards and Technology. One Osram Sylvania 1000-Watt Quartz-Halogen Lamp Model #T6, Serial #F-455/F-456. http://www.iup.uni-bremen.de/UVSAT_material/technotes/SCIAMACHY_calibration/FEL_NIST_Calibration_Report.pdf.
  22. Gloudemans, A.M.S., Schrijver, H., Kleipool, Q., van den Broek, M.M.P., Straume, A.G., Lichtenberg, G., van Hees, R.M., Aben, I., Meirink, J.F.: 2005, The impact of SCIAMACHY near-infrared instrument calibration on CH4 and CO total columns. Atmos. Chem. Phys. 5, 2369. DOI. ADSCrossRefGoogle Scholar
  23. Gottwald, M., Bovensmann, H. (eds.): 2011, Sciamachy – Exploring the Changing Earth’s Atmosphere, Springer, Dordrecht. 978-90-481-9896-2. DOI. Google Scholar
  24. Gottwald, M., Bovensmann, H., Lichtenberg, G., Noël, S., von Bargen, A., Slijkhuis, S., Piters, A., Hoogeveen, R., von Savigny, C., Buchwitz, M., Kokhanovsky, A., Richter, A., Rozanov, A., Holzer-Popp, T., Bramstedt, K., Lambert, J.-C., Skupin, J., Wittrock, F., Schrijver, H., Burrows, J.P.: 2006, SCIAMACHY, Monitoring the Changing Earth’s Atmosphere, DLR, Oberpfaffenhofen. http://atmos.caf.dlr.de/projects/scops/sciamachy_book/sciamachy_book.html. Google Scholar
  25. Gottwald, M., Hoogeveen, R., Chlebek, C., Bovensmann, H., Carpay, J., Lichtenberg, G., Krieg, E., Lützow-Wentzky, P., Watts, T.: 2011, The Instrument, 29. Chapter 3. (See Gottwald and Bovensmann, 2011.) Google Scholar
  26. Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B., White, W.: 2010, Solar influences on climate. Rev. Geophys. 48(4), RG4001. DOI. ADSCrossRefGoogle Scholar
  27. Gröbner, J., Kröger, I., Egli, L., Hülsen, G., Riechelmann, S., Sperfeld, P.: 2017, The high-resolution extraterrestrial solar spectrum (QASUMEFTS) determined from ground-based solar irradiance measurements. Atmos. Meas. Tech. 10(9), 3375. DOI. CrossRefGoogle Scholar
  28. Gurlit, W., Bösch, H., Bovensmann, H., Burrows, J.P., Butz, A., Camy-Peyret, C., Dorf, M., Gerilowski, K., Lindner, A., Noël, S., Platt, U., Weidner, F., Pfeilsticker, K.: 2005, The UV-A and visible solar irradiance spectrum: Inter-comparison of absolutely calibrated, spectrally medium resolution solar irradiance spectra from balloon- and satellite-borne measurements. Atmos. Chem. Phys. 5(7), 1879. DOI. ADSCrossRefGoogle Scholar
  29. Haigh, J.D.: 2007, The Sun and the Earth’s climate. Living Rev. Solar Phys. 4(1), 2. DOI. ADSGoogle Scholar
  30. Hall, L.A., Anderson, G.P.: 1991, High-resolution solar spectrum between 2000 and 3100 Å. J. Geophys. Res., Atmos. 96(D7), 12927. DOI. ADSCrossRefGoogle Scholar
  31. Harder, J.W., Thuillier, G., Richard, E.C., Brown, S.W., Lykke, K.R., Snow, M., McClintock, W.E., Fontenla, J.M., Woods, T.N., Pilewskie, P.: 2010, The SORCE SIM solar spectrum: Comparison with recent observations. Solar Phys. 263, 3. DOI. ADSCrossRefGoogle Scholar
  32. Kopp, G., Lean, J.L.: 2011, A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett. 38(1), L01706. DOI. ADSCrossRefGoogle Scholar
  33. Krijger, J.M., Snel, R., van Harten, G., Rietjens, J.H.H., Aben, I.: 2014, Mirror contamination in space I: Mirror modelling. Atmos. Meas. Tech. 7(10), 3387. DOI. CrossRefGoogle Scholar
  34. Kurucz, R.L.: 1995, CD-ROM 23, atomic lines. http://kurucz.harvard.edu/cdroms.html.
  35. Kurucz, R.L., Furenlid, I., Brault, J., Testerman, L.: 1984, Solar flux atlas from 296 to 1300 nm. ADS. Google Scholar
  36. Lichtenberg, G.: 2005, Changes in the calculation of keydata REF_WLS. Technical report, SRON-EOS. Google Scholar
  37. Lichtenberg, G., Kleipool, Q., Krijger, J.M., van Soest, G., van Hees, R., Tilstra, L.G., Acarreta, J.R., Aben, I., Ahlers, B., Bovensmann, H., Chance, K., Gloudemans, A.M.S., Hoogeveen, R.W.M., Jongma, R.T.N., Noël, S., Piters, A., Schrijver, H., Schrijvers, C., Sioris, C.E., Skupin, J., Slijkhuis, S., Stammes, P., Wuttke, M.: 2006, SCIAMACHY Level 1 data: Calibration concept and in-flight calibration. Atmos. Chem. Phys. 6(12), 5347. DOI. ADSCrossRefGoogle Scholar
  38. Markwardt, C.B.: 2009, Non-linear least-squares fitting in IDL with MPFIT. In: Bohlender, D.A., Durand, D., Dowler, P. (eds.) Astronomical Data Analysis Software and Systems XVIII, Astronomical Society of the Pacific Conference Series 411, 251. ADS. Google Scholar
  39. Matthes, K., Funke, B., Andersson, M.E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M.A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C.H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D.R., Maycock, A.C., Misios, S., Rodger, C.J., Scaife, A.A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P.T., Versick, S.: 2017, Solar forcing for CMIP6 (v3.2). Geosci. Model Dev. 10(6), 2247. DOI. ADSCrossRefGoogle Scholar
  40. Meftah, M., Dewitte, S., Irbah, A., Chevalier, A., Conscience, C., Crommelynck, D., Janssen, E., Mekaoui, S.: 2014, SOVAP/Picard, a spaceborne radiometer to measure the total solar irradiance. Solar Phys. 289, 1885. DOI. ADSCrossRefGoogle Scholar
  41. Meftah, M., Bolsée, D., Damé, L., Hauchecorne, A., Pereira, N., Irbah, A., Bekki, S., Cessateur, G., Foujols, T., Thiéblemont, R.: 2016, Solar irradiance from 165 to 400 nm in 2008 and UV variations in three spectral bands during Solar Cycle 24. Solar Phys. 291, 3527. DOI. ADSCrossRefGoogle Scholar
  42. Meftah, M., Damé, L., Bolsée, D., Pereira, N., Sluse, D., Cessateur, G., Irbah, A., Sarkissian, A., Djafer, D., Hauchecorne, A., Bekki, S.: 2017, A new solar spectrum from 656 to 3088 nm. Solar Phys. 292(8), 101. DOI. ADSCrossRefGoogle Scholar
  43. Meftah, M., Damé, L., Bolsée, D., Hauchecorne, A., Pereira, N., Sluse, D., Cessateur, G., Irbah, A., Bureau, J., Weber, M., Bramstedt, K., Hilbig, T., Thiéblemont, R., Marchand, M., Lefèvre, F., Sarkissian, A., Bekki, S.: 2018, SOLAR-ISS: A new reference spectrum based on SOLAR/SOLSPEC observations. Astron. Astrophys. 611, A1. DOI. CrossRefGoogle Scholar
  44. Menang, K.P., Coleman, M.D., Gardiner, T.D., Ptashnik, I.V., Shine, K.P.: 2013, A high-resolution near-infrared extraterrestrial solar spectrum derived from ground-based Fourier transform spectrometer measurements. J. Geophys. Res., Atmos. 118(11), 5319. DOI. ADSCrossRefGoogle Scholar
  45. Neckel, H., Labs, D.: 1984, The solar radiation between 3300 and 12500 Å. Solar Phys. 90(2), 205. DOI. ADSCrossRefGoogle Scholar
  46. Noël, S.: 2005, Determination of Correction Factors for SCIAMACHY Radiances and Irradiances. Technical Report IFE-SCIA-SN-20050203_IrrRadCorrection, Institute of Environmental Physics (IUP). http://www.iup.uni-bremen.de/UVSAT_material/technotes/SCIAMACHY_calibration/Noel_2005_IFE-SCIA-SN-20050203_IrrRadCorrection_5.2.pdf.
  47. Pagaran, J., Weber, M., Burrows, J.P.: 2009, Solar variability from 240 to 1750 nm in terms of faculae brightening and sunspot darkening from SCIAMACHY. Astrophys. J. 700, 1884. DOI. ADSCrossRefGoogle Scholar
  48. Pagaran, J., Harder, J., Weber, M., Floyd, L., Burrows, J.P.: 2011a, Intercomparison of SCIAMACHY and SIM vis-IR irradiance over several solar rotational timescales. Astron. Astrophys. 528, A67. DOI. ADSCrossRefGoogle Scholar
  49. Pagaran, J., Weber, M., DeLand, M., Floyd, L., Burrows, J.P.: 2011b, Solar spectral irradiance variations in 240 – 1600 nm during the recent Solar Cycles 21 – 23. Solar Phys. 272, 159. DOI. ADSCrossRefGoogle Scholar
  50. Pereira, N., Bolsée, D., Sperfeld, P., Pape, S., Sluse, D., Cessateur, G.: 2018, Metrology of the solar spectral irradiance at the top of atmosphere in the near infrared measured at Mauna Loa Observatory: The PYR-ILIOS campaign. Atmos. Meas. Tech. 2018, 1. DOI. Google Scholar
  51. Rottman, G.J., Woods, T.N., Sparn, T.P.: 1993, Solar–Stellar Irradiance Comparison Experiment 1: 1. Instrument design and operation. J. Geophys. Res. 98, 10667. DOI. ADSCrossRefGoogle Scholar
  52. Schmid, B., Wehrli, C.: 1995, Comparison of Sun photometer calibration by use of the Langley technique and the standard lamp. Appl. Opt. 34(21), 4500. DOI. ADSCrossRefGoogle Scholar
  53. Schmutz, W., Fehlmann, A., Finsterle, W., Kopp, G., Thuillier, G.: 2013, Total solar irradiance measurements with PREMOS/PICARD. In: American Institute of Physics Conference Series, American Institute of Physics Conference Series 1531, 624. DOI. Google Scholar
  54. Skupin, J.: 2005, An alternative etalon correction for SCIAMACHY. Technical Report IFE-SCIA-JS-20050805_EtalonCorrection, Institute of Environmental Physics (IUP). Issue 3. Google Scholar
  55. Skupin, J., Weber, M., Noël, S., Bovensmann, H., Burrows, J.P.: 2005a, GOME and SCIAMACHY solar measurements: Solar spectral irradiance and Mg II solar activity proxy indicator. Mem. Soc. Astron. Ital. 76, 1038. http://sait.oat.ts.astro.it/MSAIt760405/PDF/2005MmSAI..76.1038S.pdf. ADSGoogle Scholar
  56. Skupin, J., Noël, S., Wuttke, M.W., Gottwald, M., Bovensmann, H., Weber, M., Burrows, J.P.: 2005b, SCIAMACHY solar irradiance observation in the spectral range from 240 to 2380 nm. Adv. Space Res. 35, 370. DOI. ADSCrossRefGoogle Scholar
  57. Slijkhuis, S., Lichtenberg, G.: 2014, SCIAMACHY L0-1c Processor ATBD (Algorithm Theoretical Baseline Document for Processor V.8). Docnr.: ENV-ATB-DLR-SCIA-0041, Issue: 6. https://earth.esa.int/documents/700255/708683/ENV-ATB-DLR-SCIA-0041-6-SCIA-L1B-ATBD.pdf.
  58. Snel, R.: 2015, SCIAMACHY ESM diffuser solar reference spectra. Technical Report SRON-SQWG3-TN-2015-003, SRON. Google Scholar
  59. Snow, M., Weber, M., Machol, J., Viereck, R., Richard, E.: 2014, Comparison of Magnesium II core-to-wing ratio observations during solar minimum 23/24. J. Space Weather Space Clim. 4, A04. DOI. CrossRefGoogle Scholar
  60. Solanki, S.K., Krivova, N.A., Haigh, J.D.: 2013, Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys. 51(1), 311. DOI. ADSCrossRefGoogle Scholar
  61. Thuillier, G., Hersé, M., Simon, P.C., Labs, D., Mandel, H., Gillotay, D.: 1998, Observation of the solar spectral irradiance from 200 nm to 870 nm during the ATLAS 1 and ATLAS 2 missions by the SOLSPEC spectrometer. Metrologia 35(4), 689. http://stacks.iop.org/0026-1394/35/i=4/a=79. ADSCrossRefGoogle Scholar
  62. Thuillier, G., Floyd, L., Woods, T.N., Cebula, R., Hilsenrath, E., Hersé, M., Labs, D.: 2004, Solar irradiance reference spectra. In: Pap, J.M., Fox, P., Fröhlich, C., Hudson, H.S., Kuhn, J., McCormack, J., North, G., Sprigg, W., Wu, S.T. (eds.) Geophys. Monogr. 141, 171. DOI. Google Scholar
  63. Thuillier, G., Bolsée, D., Schmidtke, G., Foujols, T., Nikutowski, B., Shapiro, A.I., Brunner, R., Weber, M., Erhardt, C., Hersé, M., Gillotay, D., Peetermans, W., Decuyper, W., Pereira, N., Haberreiter, M., Mandel, H., Schmutz, W.: 2014, The solar irradiance spectrum at solar activity minimum between Solar Cycles 23 and 24. Solar Phys. 289, 1931. DOI. ADSCrossRefGoogle Scholar
  64. Thuillier, G., Harder, J.W., Shapiro, A., Woods, T.N., Perrin, J.-M., Snow, M., Sukhodolov, T., Schmutz, W.: 2015, The infrared solar spectrum measured by the SOLSPEC Spectrometer onboard the International Space Station. Solar Phys. 290, 1581. DOI. ADSCrossRefGoogle Scholar
  65. Viereck, R.A., Floyd, L.E., Crane, P.C., Woods, T.N., Knapp, B.G., Rottman, G., Weber, M., Puga, L.C., DeLand, M.T.: 2004, A composite Mg II index spanning from 1978 to 2003. Space Weather 2, S10005. DOI. ADSCrossRefGoogle Scholar
  66. Viereck, R., Puga, L., McMullin, D., Judge, D., Weber, M., Tobiska, W.K.: 2001, The Mg II index: A proxy for solar EUV. Geophys. Res. Lett. 28, 1343. DOI. ADSCrossRefGoogle Scholar
  67. Walker, J.H., Saunders, R.D., Jackson, J.K., McSparron, D.: 1987, NBS Measurement Services: Spectral Irradiance Calibrations. Technical Report NBS Special Publication 250-20, National Bureau of Standards. DOI.
  68. Weber, M.: 1999, Solar activity during Solar Cycle 23 monitored by GOME. In: ESA-WPP 1999 Eur. Symp. Atmos. Meas. from Space, Proc. ESAMS ’99, ESA Special Publication 161, Noordwijk, 611. http://www.iup.uni-bremen.de/UVSAT_material/papers/weber_esams99.pdf. Google Scholar
  69. Weber, M.: 2015, Comment on the Article by Thuillier et al. “The Infrared Solar Spectrum Measured by the SOLSPEC Spectrometer onboard the International Space Station”. Solar Phys. 290, 1601. DOI. ADSCrossRefGoogle Scholar
  70. Weber, M., Burrows, J.P., Cebula, R.P.: 1998, GOME solar UV/vis irradiance measurements between 1995 and 1997 – First results on proxy solar activity studies. Solar Phys. 177, 63. DOI. ADSCrossRefGoogle Scholar
  71. Wen, G., Cahalan, R.F., Rind, D., Jonas, J., Pilewskie, P., Wu, D.L., Krivova, N.A.: 2017, Climate responses to SATIRE and SIM-based spectral solar forcing in a 3D atmosphere-ocean coupled GCM. J. Space Weather Space Clim. 7, A11. DOI. ADSCrossRefGoogle Scholar
  72. Woods, T.N., Chamberlin, P.C., Harder, J.W., Hock, R.A., Snow, M., Eparvier, F.G., Fontenla, J., McClintock, W.E., Richard, E.C.: 2009, Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI). Geophys. Res. Lett. 36(1), L01101. DOI. ADSCrossRefGoogle Scholar
  73. Zoutman, E., Derksen, G., Bokhove, H., Snel, R.: 2000, Error budget for SCIAMACHY calibration. Technical Report RP-SCIA-0000TP/225, 14 Dec 2000, SCIAMACHY Joint Team FS-TPD-SRON. http://www.iup.uni-bremen.de/UVSAT_material/technotes/SCIAMACHY_calibration/Zoutman_2000_RP-SCIA-0000TP225i2_Error_budget.pdf.

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of Environmental PhysicsUniversity of BremenBremenGermany
  2. 2.SRON Netherlands Institute for Space ResearchUtrechtThe Netherlands
  3. 3.Earth Space SolutionsUtrechtThe Netherlands
  4. 4.Science & TechnologyUtrechtThe Netherlands
  5. 5.TNODelftThe Netherlands
  6. 6.LATMOSUniversité Paris Saclay, UVSQ, CNRSGuyancourtFrance
  7. 7.Royal Belgian Institute for Space Aeronomy (BIRA-IASB)BrusselsBelgium

Personalised recommendations