Solar Physics

, 293:120 | Cite as

The Problem of the Height Dependence of Magnetic Fields in Sunspots

  • Horst BalthasarEmail author
Invited Review


To understand the physics of sunspots, it is important to know the properties of their magnetic field, and especially its height stratification plays a substantial role. There are mainly two methods to assess this stratification, but they yield different magnetic gradients in the photospheric layers. Determinations based on the several spectral lines of different formation heights and the slope of their profiles result in gradients of −2 to −3 G km−1, or even steeper. This is similar for the total magnetic field strength and for the vertical component of the magnetic field. The other option is to determine the horizontal partial derivatives of the magnetic field, and with the condition \(\operatorname{div} {{\boldsymbol {B}}} = 0\) also the vertical derivative is known. With this method, gradients of −0.5 G km−1 and even shallower are obtained. Obviously, these results do not agree. If chromospheric spectral lines are included, only shallow gradients around −0.5 G km−1 are obtained. Shallow gradients are also found from gyro-resonance measurements in the radio wave range 300 – 2000 GHz.

Some indirect methods are also considered, but they cannot clarify the total picture. An analysis of a numerical simulation of a sunspot indicates a shallow gradient over a wide height range, but with slightly steeper gradients in deep layers.

Several ideas to explain the discrepancy are also discussed. With no doubts cast on Maxwell’s equations, the first one is to look at the uncertainties of the formation heights of spectral lines, but a wider range of these heights would require an extension of the solar photosphere that is incompatible with observations and the theory of stellar atmospheres. Submerging and rising magnetic flux might play a role in the outer penumbra, if the resolution is too low to separate them, but it is not likely that this effect acts also in the umbra. A quick investigation assuming a spatial small scale structure of sunspots together with twist and writhe of individual flux tubes shows a reduction of the measured magnetic field strength for spectral lines sensitive to a larger height range. However, sophisticated investigations are required to prove that the explanation for the discrepancy lies here, and the problem of the height gradient of the magnetic field in sunspots is still not solved.


Sunspots Magnetic fields Umbra Penumbra Photosphere Chromosphere 



I am deeply indebted to Dr. Véronique Bommier for many discussions and comments on the topic. I also thank her and Prof. Carsten Denker for carefully reading the manuscript. Dr. Matthias Steffen provided me with a model atmosphere and Dr. Matthias Rempel with a cut through one of his numerical simulations. My thanks go also to Dr. Morten Franz and Dr. Sanjiv Tiwari for the permission to use their figures (Figure 10 and Figure 2). The 1.5-meter GREGOR solar telescope was built by a German consortium under the leadership of the Kiepenheuer Institute for Solar Physics in Freiburg with the Leibniz Institute for Astrophysics Potsdam, the Institute for Astrophysics Göttingen, and the Max-Planck-Institute for Solar System Research in Göttingen as partners, and with contributions by the Instituto de Astrofísica de Canarias and the Astronomical Institute of the Academy of Sciences of the Czech Republic.

Disclosure of Potential Conflicts of Interest

The author declares that he has no conflicts of interest.


  1. Abdussamatov, H.I.: 1971, On the magnetic fields and motions in sunspots at different atmospheric levels. Solar Phys. 16, 384. DOI. ADS. ADSGoogle Scholar
  2. Akhmedov, S.B., Gelfreikh, G.B., Bogod, V.M., Korzhavin, A.N.: 1982, The measurement of magnetic fields in the solar atmosphere above sunspots using gyroresonance emission. Solar Phys. 79, 41. DOI. ADS. ADSGoogle Scholar
  3. Balthasar, H.: 1985, On the contribution of horizontal granular motions to observed limb-effect curves. Solar Phys. 99, 31. DOI. ADS. ADSGoogle Scholar
  4. Balthasar, H.: 2006, Vertical current densities and magnetic gradients in sunspots. Astron. Astrophys. 449, 1169. DOI. ADS. ADSGoogle Scholar
  5. Balthasar, H., Bommier, V.: 2009, The height dependence of the magnetic vector field in sunspots. In: Berdyugina, S.V., Nagendra, K.N., Ramelli, R. (eds.) Solar Polarization 5 in Honor of Jan Olof Stenflo, Astron. Soc. Pacific Conf. Ser. 405, 229. ADS. Google Scholar
  6. Balthasar, H., Collados, M.: 2005, Some properties of an isolated sunspot. Astron. Astrophys. 429, 705. DOI. ADS. ADSGoogle Scholar
  7. Balthasar, H., Gömöry, P.: 2008, The three-dimensional structure of sunspots, I: The height dependence of the magnetic field. Astron. Astrophys. 488, 1085. DOI. ADS. ADSGoogle Scholar
  8. Balthasar, H., Schmidt, W.: 1993, Polarimetry and spectroscopy of a simple sunspot, II: On the height and temperature dependence of the magnetic field. Astron. Astrophys. 279, 243. ADS. ADSGoogle Scholar
  9. Balthasar, H., Beck, C., Gömöry, P., Muglach, K., Puschmann, K.G., Shimizu, T., Verma, M.: 2013, Properties of a decaying sunspot. Cent. Eur. Astrophys. Bull. 37, 435. ADS. ADSGoogle Scholar
  10. Balthasar, H., Beck, C., Louis, R.E., Verma, M., Denker, C.: 2014a, Near infrared spectropolarimetry of a \(\delta\)-spot. Astron. Astrophys. 562, L6. DOI. ADS. ADSGoogle Scholar
  11. Balthasar, H., Beck, C., Louis, R.E., Verma, M., Denker, C.: 2014b, The magnetic configuaration of a \(\delta\)-spot. In: Nagendra, K.N., Stenflo, J.O., Qu, Z.Q., Sampoorna, M. (eds.) Solar Polarization 7, Astron. Soc. Pacific Conf. Ser. 489, 39. ADS. Google Scholar
  12. Balthasar, H., Gömöry, P., González Manrique, S.J., Kuckein, C., Kavka, J., Kučera, A., Schwartz, P., Vaškova, R., Berkefeld, T., Collados Vera, M., Denker, C., Feller, A., Hofmann, A., Lagg, A., Nicklas, H., Orozco Suárez, D., Pastor Yabar, A., Rezaei, R., Schlichenmaier, R., Schmidt, D., Schmidt, W., Sigwarth, M., Sobotka, M., Solanki, S.K., Soltau, D., Staude, J., Strassmeier, K.G., Volkmer, R., von der Lühe, O., Waldmann, T.: 2016, Spectropolarimetric observation of an arch filament system with the GREGOR solar telescope. Astron. Nachr. 337, 1050. DOI. ADS. ADSGoogle Scholar
  13. Balthasar, H., Gömöry, P., González Manrique, S.J., Kuckein, C., Kučera, A., Schwartz, P., Berkefeld, T., Collados Vera, M., Denker, C., Feller, A., Hofmann, A., Schmidt, D., Schmidt, W., Sobotka, M., Solanki, S.K., Soltau, D., Staude, J., Strassmeier, K.G., Volkmer, R., von der Lühe, O.: 2018, Spectropolarimetric observations of an arch filament system with the GREGOR. In: Belluzi, L. (ed.) Solar Polarization 8, Astron. Soc. Pacific Conf. Ser.. arXiv. ADS. Google Scholar
  14. Bellot Rubio, L.R., Balthasar, H., Collados, M.: 2004, Two magnetic components in sunspot penumbrae. Astron. Astrophys. 427, 319. DOI. ADS. ADSGoogle Scholar
  15. Berger, T.E., Title, A.M.: 2001, On the relation of G-band bright points to the photospheric magnetic field. Astrophys. J. 553, 449. DOI. ADS. ADSGoogle Scholar
  16. Berlicki, A., Mein, P., Schmieder, B.: 2006, THEMIS/MSDP magnetic field measurements. Astron. Astrophys. 445, 1127. DOI. ADS. ADSGoogle Scholar
  17. Berlin, A.B., Esepkina, N.A., Zverev, Y.K., Kajdanovskij, N.L., Korol’Kov, D.V., Kopylov, A.I., Korkin, E.I., Parijskij, Y.N., Ryzhkov, N.F., Soboleva, N.S., Stotskij, A.A., Shivris, O.N.: 1977, The new radio telescope of the USSR Academy of Sciences, RATAN-600. Prib. Tekh. Eksp. 5, 8. ADS. Google Scholar
  18. Bommier, V.: 2013, Reconciling the vertical and horizontal gradients of the sunspot magnetic field. Phys. Res. Int. 2013, 195403. DOI. ADS. Google Scholar
  19. Bommier, V.: 2014, Electromagnetism in a strongly stratified plasma showing an unexpected effect of the Debye shielding. C. R. Phys. 15, 430. DOI. ADS. ADSGoogle Scholar
  20. Bommier, V., Landi Degl’Innocenti, E., Landolfi, M., Molodij, G.: 2007, UNNOFIT inversion of spectro-polarimetric maps observed with THEMIS. Astron. Astrophys. 464, 323. DOI. ADS. ADSGoogle Scholar
  21. Borrero, J.M.: 2007, The structure of sunspot penumbrae, IV: MHS equilibrium for penumbral flux tubes and the origin of dark core penumbral filaments and penumbral grains. Astron. Astrophys. 471, 967. DOI. ADS. ADSGoogle Scholar
  22. Borrero, J.M., Lites, B.W., Solanki, S.K.: 2008, Evidence of magnetic field wrapping around penumbral filaments. Astron. Astrophys. 481, L13. DOI. ADS. ADSGoogle Scholar
  23. Brosius, J.W., White, S.M.: 2006, Radio measurements of the height of strong coronal magnetic fields above sunspots at the solar limb. Astrophys. J. Lett. 641, L69. DOI. ADS. ADSGoogle Scholar
  24. Bruls, J.H.M.J., Solanki, S.K., Rutten, R.J., Carlsson, M.: 1995, Infrared lines as probes of solar magnetic features VIII. Mg i 12 \(\upmu\)m diagnostics of sunspots. Astron. Astrophys. 293, 225. ADS. ADSGoogle Scholar
  25. Chen, H.R., Chou, D.Y., Chang, H.K., Sun, M.T., Yeh, S.J., LaBonte, B., the TON Team: 1998, Probing the subsurface structure of active regions with the phase information in acoustic imaging. Astrophys. J. Lett. 501, L139. DOI. ADS. ADSGoogle Scholar
  26. Collados, M., Martínez Pillet, V., Ruiz Cobo, B., del Toro Iniesta, J.C., Vázquez, M.: 1994, Observed differences between large and small sunspots. Astron. Astrophys. 291, 622. ADS. ADSGoogle Scholar
  27. Collados, M., Lagg, A., Díaz García, J.J., Hernández Suárez, E., López López, R., Páez Maña, E., Solanki, S.K.: 2007, Tenerife Infrared Polarimeter II. In: Heinzel, P., Dorotovič, I., Rutten, R.J. (eds.) The physics of chromospheric plasmas, Astron. Soc. Pacific Conf. Ser. 368, 611. ADS. Google Scholar
  28. Collados, M., López, R., Páez, E., Hernández, E., Reyes, M., Calcines, A., Ballesteros, E., Diaz, J.J., Denker, C., Lagg, A., Schlichenmaier, R., Schmidt, W., Solanki, S.K., Strassmeier, K.G., von der Lühe, O., Volkmer, R.: 2012, GRIS: The GREGOR infrared spectrograph. Astron. Nachr. 333, 872. DOI. ADS. ADSGoogle Scholar
  29. del Toro Iniesta, J.C., Bellot Rubio, L.R., Collados, C.: 2001, Cold, supersonic Evershed downflows in a sunspot. Astrophys. J. 549, L139. DOI. ADS. ADSGoogle Scholar
  30. Denker, C., Heibel, C., Rendtel, J., Arlt, K., Balthasar, J.H., Diercke, A., González Manrique, S.J., Hofmann, A., Kuckein, C., Önel, H., Senthamizh Pavai, V., Staude, J., Verma, M.: 2016, Solar physics at the Einstein tower. Astron. Nachr. 337, 1105. DOI. ADS. ADSGoogle Scholar
  31. Dunn, R.B.: 1969, Sacramento Peak’s new solar telescope. Sky Telesc. 38, 368. ADS. ADSGoogle Scholar
  32. Eibe, M.T., Aulanier, G., Faurobert, M., Mein, P., Malherbe, J.M.: 2002, Vertical structure of sunspots from THEMIS observations. Astron. Astrophys. 381, 290. DOI. ADS. ADSGoogle Scholar
  33. Faurobert, M., Aime, C., Périni, C., Uitenbroek, H., Grec, C., Arnaud, J., Ricort, G.: 2009, Direct measurement of the formation height difference of the 630 nm Fe i solar lines. Astron. Astrophys. 507, L29. DOI. ADS. ADSGoogle Scholar
  34. Felipe, T., Collados, M., Khomenko, L., Kuckein, C., Asensio Ramos, A., Balthasar, H., Berkefeld, T., Denker, C., Feller, A., Franz, M., Hofmann, A., Joshi, J., Kiess, C., Lagg, A., Nicklas, H., Orozco Suárez, D., Pastor Yabar, A., Rezaei, R., Schlichenmaier, R., Schmidt, D., Schmidt, W., Sigwarth, M., Sobotka, M., Solanki, S.K., Soltau, D., Staude, J., Strassmeier, K.G., Volkmer, R., von der Lühe, O., Waldmann, T.: 2016, Three-dimensional structure of a sunspot light bridge. Astron. Astrophys. 596, A59. DOI. ADS. ADSGoogle Scholar
  35. Franz, M., Schlichenmaier, R.: 2013, The velocity field of sunspot penumbrae, II: Return flow and magnetic fields of opposite polarity. Astron. Astrophys. 550, A97. DOI. ADS. ADSGoogle Scholar
  36. Franz, M., Collados, M., Bethge, C., Schlichenmaier, R., Borrero, J.M., Schmidt, W., Lagg, A., Solanki, S.K., Berkefeld, T., Kiess, C., Rezaei, R., Schmidt, D., Sigwarth, M., Soltau, D., Volkmer, R., von der Luhe, O., Waldmann, T., Orozco, D., Pastor Yabar, A., Denker, C., Balthasar, H., Staude, J., Hofmann, A., Strassmeier, K., Feller, A., Nicklas, H., Kneer, F., Sobotka, M.: 2016, Magnetic fields of opposite polarity in sunspot penumbrae. Astron. Astrophys. 596, A4. DOI. ADS. Google Scholar
  37. Freytag, B., Steffen, M., Dorch, B.: 2002, Spots on the surface of Betelgeuse – results from the new 3D stellar convection models. Astron. Nachr. 323, 213. DOI. ADS. ADSGoogle Scholar
  38. Frutiger, C., Solanki, S.K., Fligge, M., Bruls, J.H.M.J.: 2000, Properties of the solar granulation obtained from the inversion of low spatial resolution spectra. Astron. Astrophys. 358, 1109. ADS. ADSGoogle Scholar
  39. Gelly, B.F.: 2007, THEMIS Instrumentation and strategy for the future. In: Heinzel, P., Dorotovič, K.N., Rutten, R.J. (eds.) The Physics of Chromospheric Plasmas, Astron. Soc. Pacific Conf. Ser. 368, 593. ADS. Google Scholar
  40. Grigoryev, V.M., Grigor’ev, V.M., Kobanov, N.I., Osak, B.F., Selivanov, V.L., Stepanov, V.E.: 1985, The vector magnetograph of the Sayan Solar Observatory. In: Hagyard, M.J. (ed.) Measurements of Solar Magnetic Vector Fields, NASA Conf. Publ. 2374, 231. ADS. Google Scholar
  41. Hagyard, M.J., Teuber, D., West, E.A., Tandberg-Hanssen, E., Henze, W., Beckers, J.M., Bruner, M., Hyder, C.L., Woodgate, B.E.: 1983, Vertical gradients of sunspot magnetic fields. Solar Phys. 84, 13. DOI. ADS. ADSGoogle Scholar
  42. Hale, G.E.: 1908, On the probable existence of a magnetic field in sunspots. Astrophys. J. 28, 315. DOI. ADS. ADSGoogle Scholar
  43. Henze, W., Tandberg-Hanssen, E., Hagyard, M.J., Woodgate, B.E., Shine, R.A., Beckers, J.M., Bruner, M., Gurman, J.B., Hyder, C.L., West, E.A.: 1982, Observations of the longitudinal magnetic field in the transition region and photosphere of a sunspot. Solar Phys. 81, 231. DOI. ADS. ADSGoogle Scholar
  44. Hewagama, T., Deming, D., Jennings, D., Osherovich, V., Wiedemann, G., Zipoy, D., Mickey, D.L., Garcia, H.: 1993, Solar magnetic field studies using the 12 micron emission lines, II: Stokes profiles and vector field samples in sunspots. Astrophys. J. Suppl. 86, 313. DOI. ADS. ADSGoogle Scholar
  45. Hofmann, A., Rendtel, J.: 1989, Analysis and results of cooperative magnetographic measurements, III: Vertical gradients of the magnetic field in the sunspot photosphere. Astron. Nachr. 310, 61. DOI. ADS. ADSGoogle Scholar
  46. Ichimoto, K., Lites, B., Elmore, D., Suematsu, Y., Tsuneta, S., Katsukawa, Y., Shimizu, T., Shine, R., Tarbell, T., Title, A., Kiyohara, J., Shinoda, K., Card, G., Lecinski, A., Streander, K., Nakagiri, M., Miyashita, M., Noguchi, M., Hoffmann, C., Cruz, T.: 2008, Polarization calibration of the Solar Optical Telescope onboard Hinode. Solar Phys. 249, 233. DOI. ADS. ADSGoogle Scholar
  47. Jaeggli, S.A., Lin, H., Mickey, D.L., Kuhn, J.R., Hegwer, S.L., Rimmele, T.R., Penn, M.J.: 2010, FIRS: a new instrument for photospheric and chromospheric studies at the DST. Mem. Soc. Astron. Ital. 81, 763. ADS. ADSGoogle Scholar
  48. Jaeggli, S.A., Lin, H., Uitenbroek, H., Rempel, M.: 2012, Comparison of multi-height observations with a 3D MHD sunspot model. In: Golub, L., De Moortel, I., Shimizu, T. (eds.) Fifth Hinode Science Meeting: Exploring the Active Sun, Astron. Soc. Pacific Conf. Ser. 456, 67. ADS. Google Scholar
  49. Jefferies, J., Lites, B.W., Skumnaich, A.: 1989, Transfer of line radiation in a megnetic field. Astrophys. J. 343, 920. DOI. ADS. ADSGoogle Scholar
  50. Joshi, J., Lagg, A., Solanki, S.K., Feller, A., Collados, D., Orozco Suárez, M., Schlichenmaier, R., Franz, M., Balthasar, H., Denker, C., Berkefeld, T., Hofmann, A., Kiess, C., Nicklas, H., Pastor Yabar, A., Rezaei, R., Schmidt, D., Schmidt, W., Sobotka, M., Soltau, D., Staude, J., Strassmeier, K.G., Volkmer, R., von der Lühe, O., Waldmann, T.: 2016, Upper chromospheric magnetic field of a sunspot penumbra: observations of fine structure. Astron. Astrophys. 596, A8. DOI. ADS. Google Scholar
  51. Joshi, J., Lagg, A., Hirzberger, J., Solanki, S.K.: 2017a, Three-dimensional magnetic structure of a sunspot: Comparison of the photosphere and upper chromosphere. Astron. Astrophys. 604, A98. DOI. ADS. ADSGoogle Scholar
  52. Joshi, J., Lagg, A., Hirzberger, J., Solanki, S.K., Tiwari, S.K.: 2017b, Vertical magnetic field gradient in the photosphereric layers of sunspots. Astron. Astrophys. 599, A35. DOI. ADS. ADSGoogle Scholar
  53. Kollatschny, W., Stellmacher, G., Wiehr, E., Falipou, M.A.: 1980, The infrered Ca+ lines in sunspot umbrae. Astron. Astrophys. 86, 245. ADS. ADSGoogle Scholar
  54. Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) Mission: An overview. Solar Phys. 243, 3. DOI. ADS. ADSGoogle Scholar
  55. Kupka, F.: 2009, Turbulent convection and numerical simulations in solar and stellar astrophysics. In: Hillebrandt, W., Kupka, F. (eds.) Interdisciplinary Aspects of Turbulence, Lecture Notes in Physics, 756, Springer, Berlin, 49. ADS. Google Scholar
  56. Lagg, A., Woch, J., Krupp, N., Solanki, S.K.: 2004, Retrieval of the full magnetic vector with the He i multiplet at 1083 nm. Maps of an emerging flux region. Astron. Astrophys. 414, 1109. DOI. ADS. ADSGoogle Scholar
  57. Liu, Y., Wang, J., Yan, Y., Ai, G.: 1996, Gradients of the line-of-sight magnetic fields in active region NOAA 6659. Solar Phys. 169, 79. DOI. ADS. ADSGoogle Scholar
  58. Maltby, P., Averett, E.H., Carlsson, M., Kjeldset-Moe, O., Kurucz, R.L., Loeser, R.: 1986, A new sunspot umbral model and its variation with the solar cycle. Astrophys. J. 306, 284. DOI. ADS. ADSGoogle Scholar
  59. Mathew, S.K., Lagg, A., Solanki, S.K., Collados, M., Borrero, J.M., Berdyugina, S., Krupp, N., Woch, J., Frutiger, C.: 2003, Three dimensional structure of a regular sunspot from the inversion of IR Stokes profiles. Astron. Astrophys. 410, 695. DOI. ADS. ADSGoogle Scholar
  60. Mathew, S.K., Solanki, S.K., Lagg, A., Collados, M., Borrero, J.M., Berdyugina, S.: 2004, Thermal-magnetic in a sunspot and a map of its Wilson depression. Astron. Astrophys. 422, 693. DOI. ADS. ADSGoogle Scholar
  61. Moran, T., Deming, D., Jennings, D.E., McCabe, G.: 2000, Solar magnetic field studies using the 12 micron emission lines, III: Simultaneous measurements at 12 and 1.6 microns. Astrophys. J. 553, 1035. DOI. ADS. ADSGoogle Scholar
  62. Muglach, K., Solanki, S.K., Livingston, W.C.: 1994, Preliminary properties of pores derived from 1.56 micron lines. In: Rutten, R.J., Schrijver, C.J. (eds.) Solar Surface Magnetism, NATO Advanced Science Institutes (ASI) Series C 433, 127. ADS. Google Scholar
  63. Orozco Suárez, D., Lagg, A., Solanki, S.K.: 2005, Photospheric and chromospheric magnetic structure of a sunspot. In: Innes, D., Lagg, A., Solanki, S.K., Danesy, D. (eds.) Chromospheric and Coronal Magnetic Fields, ESA SP-596, 59. ADS. Google Scholar
  64. Osherovich, V.A.: 1984, A note on the values of the vertical gradient of the magnetic field in the return flux sunspot model. Solar Phys. 90, 31. DOI. ADS. ADSGoogle Scholar
  65. Osherovich, V.A., Flaa, T.: 1983, Sunspot models with twisted magnetic field. Solar Phys. 88, 109. DOI. ADS. ADSGoogle Scholar
  66. Osherovich, V.A., Garcia, H.A.: 1989, The relationship of sunspot magnetic fields to umbral sizes in return flux theory. Astrophys. J. 336, 468. DOI. ADS. ADSGoogle Scholar
  67. Pahlke, K.D., Wiehr, E.: 1990, Magnetic field, relative Dopppler shift and temperature for an inhomogeneous model of sunspot umbrae. Astron. Astrophys. 228, 246. ADS. ADSGoogle Scholar
  68. Pevtsov, A.A., Canfield, R.C., Metcalf, T.R.: 1995, Latitudinal variation of helicity of photospheric magnetic fields. Astrophys. J. 440, L109. DOI. ADS. ADSGoogle Scholar
  69. Pierce, A.K.: 1964, The McMath solar telescope of Kitt Peak National Observatory. Appl. Opt. 3, 1337. DOI. ADS. ADSGoogle Scholar
  70. Puschmann, K.G., Ruiz Cobo, B., Martínez Pillet, V.: 2010, A geometrical height scale for sunspot penumbrae. Astrophys. J. 720, 1417. DOI. ADS. ADSGoogle Scholar
  71. Rempel, M.: 2011a, Penumbral fine structure and driving mechanisms of large-scale flows in simulated sunspots. Astrophys. J. 729, 5. DOI. ADS. ADSGoogle Scholar
  72. Rempel, M.: 2011b, Subsurface magnetic field and flow structure of simulated sunspots. Astrophys. J. 740, 15. DOI. ADS. ADSGoogle Scholar
  73. Rempel, M.: 2011c, Three-D numerical MHD modeling of sunspots with radiation transport. In: Choudhary, D.P., Strassmeier, K.G. (eds.) The Physics of Sun and Starspots, IAU Symp. 273, 8. DOI. ADS. Google Scholar
  74. Rempel, M.: 2012, Numerical sunspot models: Robustness of photospheric velocity and magnetic field structure. Astrophys. J. 750, 62. DOI. ADS. ADSGoogle Scholar
  75. Rüedi, I., Solanki, S.K., Livingston, W.C.: 1995, Infrared lines as probes of solar magnetic features X. He i 10830 Å as a diagnostic of chromospheric magnetic fields. Astron. Astrophys. 293, 252. ADS. ADSGoogle Scholar
  76. Ruiz Cobo, B., Asensio Ramos, A.: 2013, Returning magnetic flux in sunspot penumbrae. Astron. Astrophys. 549, L4. DOI. ADS. ADSGoogle Scholar
  77. Ruiz Cobo, B., del Toro Iniesta, J.C.: 1992, Inversion of Stokes profiles. Astrophys. J. 398, 375. DOI. ADS. ADSGoogle Scholar
  78. Sánchez Cuberes, M., Puschmann, K.G., Wiehr, E.: 2005, Spectropolarimetry of a sunspot at disk centre. Astron. Astrophys. 440, 345. DOI. ADS. ADSGoogle Scholar
  79. Schad, T.A., Penn, M.J., Lin, H., Tritschler, A.: 2015, Vector magnetic field maps of a sunspot and its superpenumbral fine-structure. Solar Phys. 290, 1607. DOI. ADS. ADSGoogle Scholar
  80. Scharmer, G.B., Bjelskjo, K., Korhonen, T.K., Lindberg, B., Petterson, B.: 2003, The 1-meter Swedish Solar Telescope. In: Keil, S.L., Avakyan, S.V. (eds.) Proc. SPIE 4853, 341. DOI. ADS. Google Scholar
  81. Schmidt, W., von der Lühe, O., Volkmer, R., Denker, C., Solanki, S.K., Balthasar, H., Bello González, N., Berkefeld, T., Collados, M., Fischer, A., Halbgewachs, C., Heidecke, F., Hofmann, A., Kneer, F., Lagg, A., Nicklas, H., Popow, E., Puschmann, K.G., Schmidt, D., Sigwarth, M., Sobotka, M., Soltau, D., Staude, J., Strassmeier, K.G., Waldmann, T.: 2012, The 1.5 meter solar telescope GREGOR. Astron. Nachr. 333, 796. DOI. ADS. ADSGoogle Scholar
  82. Seehafer, N.: 1990, Electric ccurrent helicity in the solar atmosphere. Solar Phys. 125, 219. DOI. ADS. ADSGoogle Scholar
  83. Socas-Navarro, H.: 2005, The three-dimensional structure of a sunspot magnetic field. Astrophys. J. 631, L167. DOI. ADS. ADSGoogle Scholar
  84. Solanki, S.K., Schmidt, H.U.: 1993, Are sunspot penumbrae deep or shallow? Astron. Astrophys. 267, 287. ADS. ADSGoogle Scholar
  85. Solanki, S.K., Walther, U., Livingston, W.: 1993, Infrared lines as probes of solar magnetic features VI. The thermal-magnetic relation and Wilson depression of a simple sunspot. Astron. Astrophys. 277, 639. ADS. ADSGoogle Scholar
  86. Solanki, S.K.: 2003, Sunspots: An overview. Astron. Astrophys. Rev. 11, 153. DOI. ADS. ADSGoogle Scholar
  87. Stellmacher, G., Wiehr, E.: 1975, The deep layers of sunspot umbrae. Astron. Astrophys. 45, 69. ADS. ADSGoogle Scholar
  88. Stupishin, A.G., Kaltman, T.I., Bogod, V.M., Yasnov, L.V.: 2018, Modeling of solar atmosphere parameters above sunspots using RATAN-600 microwave observations. Solar Phys. 293, 13. DOI. ADS. ADSGoogle Scholar
  89. Sütterlin, P.: 1998, Properties of solar pores. Astron. Astrophys. 333, 305. ADS. ADSGoogle Scholar
  90. Tiwari, S.K., van Noort, M., Solanki, S.K., Lagg, A.: 2015, Depth dependent global properties of a sunspot observed by Hinode using the Solar Optical Telescope/Spectropolarimeter. Astron. Astrophys. 583, A119. DOI. ADS. Google Scholar
  91. Török, T., Kliem, B., Titov, V.S.: 2004, Ideal kink instability of a magnetic loop equilibrium. Astron. Astrophys. 413, L27. DOI. ADS. ADSzbMATHGoogle Scholar
  92. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The Solar Optical Telescope for the Hinode mission: An overview. Solar Phys. 249, 167. DOI. ADS. ADSGoogle Scholar
  93. Verma, M., Denker, C., Balthasar, C., Kuckein, H., Rezaei, R., Sobotka, M., Deng, N., Wang, H., Tritschler, A., Collados, M., Diercke, A., González Manrique, S.J.: 2018, High-resolution imaging and near-infrared spectroscopy of penumbral decay. Astron. Astrophys. 614, A2. DOI. ADS. ADSGoogle Scholar
  94. Vernazza, J.E., Avrett, E.H., Loeser, R.: 1976, Structure of the solar chromosphere, II: The underlying photosphere and temperature-minimum region. Astrophys. J. Suppl. 30, 1. DOI. ADS. ADSGoogle Scholar
  95. Vincent, A., Scott, P., Trampedach, R.: 2013, Light bosons and photspheric solutions to the solar abundance problem. Mon. Not. Roy. Astron. Soc. 432, 3332. DOI. ADS. ADSGoogle Scholar
  96. von der Lühe, O.: 1998, High-resolution observations with the German Vacuum Tower Telescope on Tenerife. New Astron. Rev. 42, 493. DOI. ADS. ADSGoogle Scholar
  97. Westendorp Plaza, C., del Toro Iniesta, J.C., Ruiz Cobo, B., Martínez Pillet, V., Lites, B.W., Skumanich, A.: 2001, Optical tomography of a sunspot, II: Vector magnetic field and temeprature stratification. Astrophys. J. 547, 1130. DOI. ADS. ADSGoogle Scholar
  98. White, S.M.: 2005, Radio measurements of coronal magnetic fileds. In: Innes, D., Lagg, A., Solanki, S.K., Danesy, D. (eds.) Chromospheric and Coronal Magnetic Fields, ESA SP-596, 10. ADS. Google Scholar
  99. Wittmann, A.: 1974, Computation and observation of Zeeman multiplet polarization in Fraunhofer lines, III: Magnetic field structure of spot Mt. Wilson 18488. Solar Phys. 36, 29. DOI. ADS. ADSGoogle Scholar
  100. Woodgate, B.E., Tandberg-Hanssen, E.A., Bruner, E.C., Beckers, J.M., Brandt, J.C., Henze, W., Hyder, C.L., Kalet, M.W., Kenny, P.J., Knox, E.D., Michalitsianos, A.G., Rehse, R., Shine, R.A., Tinsley, H.D.: 1980, The ultraviolet spectrometer and polarimeter on the Solar Maximum Mission. Solar Phys. 65, 73. DOI. ADS. ADSGoogle Scholar
  101. Zhang, H., Bao, S., Kuzanyan, K.M.: 2002, Twist of magnetic fields in solar active regions. Astron. Rep. 46, 424. DOI. ADS. ADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Leibniz-Institut für Astrophysik Potsdam (AIP)PotsdamGermany

Personalised recommendations