Solar Physics

, 293:115 | Cite as

LOFAR Observations of Fine Spectral Structure Dynamics in Type IIIb Radio Bursts

  • I. N. SharykinEmail author
  • E. P. Kontar
  • A. A. Kuznetsov


Solar radio emission features a large number of fine structures demonstrating great variability in frequency and time. We present spatially resolved spectral radio observations of type IIIb bursts in the 30 – 80 MHz range made by the Low Frequency Array (LOFAR). The bursts show well-defined fine frequency structuring called “stria” bursts. The spatial characteristics of the stria sources are determined by the propagation effects of radio waves; their movement and expansion speeds are in the range of \((0.1\,\mbox{--}\,0.6)c\). Analysis of the dynamic spectra reveals that both the spectral bandwidth and the frequency drift rate of the striae increase with an increase of their central frequency. The striae bandwidths are in the range of \({\approx}\,(20\,\mbox{--}\,100)\) kHz and the striae drift rates vary from zero to \({\approx}\,0.3~\mbox{MHz}\,\mbox{s}^{-1}\). The observed spectral characteristics of the stria bursts are consistent with the model involving modulation of the type III burst emission mechanism by small-amplitude fluctuations of the plasma density along the electron beam path. We estimate that the relative amplitude of the density fluctuations is of \(\Delta n/n\sim10^{-3}\), their characteristic length scale is less than 1000 km, and the characteristic propagation speed is in the range of \(400\,\mbox{--}\,800~\mbox{km}\,\mbox{s}^{-1}\). These parameters indicate that the observed fine spectral structures could be produced by propagating magnetohydrodynamic waves.


Corona, radio emission Radio bursts, type III Turbulence 



The work has benefited from a Marie Curie International Research Staff Exchange Scheme “Radiosun” (PEOPLE-2011-IRSES-295272), an international team grant ( ) from ISSI Bern, Switzerland, the Program No. 28 of the RAS Presidium, and budgetary funding of Basic Research program II.16. E.P.K. was supported by Science and Technology Facilities Council Grant (STFC) No. ST/P000533/1. This paper is based (in part) on data obtained from facilities of the International LOFAR Telescope (ILT) under project code LC3-012. LOFAR (van Haarlem et al., 2013) is the Low Frequency Array designed and constructed by ASTRON. It has observing, data processing, and data storage facilities in several countries, which are owned by various parties (each with their own funding sources), and that are collectively operated by the ILT foundation under a joint scientific policy. The ILT resources have benefited from the following recent major funding sources: CNRS-INSU, Observatoire de Paris and Université d’Orléans, France; BMBF, MIWF-NRW, MPG, Germany; Science Foundation Ireland (SFI), Department of Business, Enterprise and Innovation (DBEI), Ireland; NWO, The Netherlands; The Science and Technology Facilities Council, UK.

Disclosure of Potential Conflicts of Interest

The authors claim that they have no conflicts of interest.


  1. Abranin, E.P., Baselian, L.L., Goncharov, N.I., Zinichev, V.A., Rapoport, V.O., Tsybko, I.G.: 1979, Harmonic structure of type IIIb and III bursts. Solar Phys. 62, 145. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Alissandrakis, C.E., Nindos, A., Patsourakos, S., Kontogeorgos, A., Tsitsipis, P.: 2015, A tiny event producing an interplanetary type III burst. Astron. Astrophys. 582, A52. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Alvarez, H., Haddock, F.T.: 1973, Solar wind density model from km-wave type III bursts. Solar Phys. 29, 197. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Arzner, K., Magun, A.: 1999, Radiowave propagation in a statistically inhomogeneous plasma. Astron. Astrophys. 351, 1165. ADS. ADSGoogle Scholar
  5. Aschwanden, M.J.: 2005, Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd edn. Praxis Publishing Ltd., Chichester. Google Scholar
  6. Baselian, L.L., Goncharov, N.I., Zaitsev, V.V., Zinichev, V.A., Rapoport, V.O., Tsybko, I.G.: 1974, Frequency and time splitting of decameter solar radio bursts. I – Elementary events. Solar Phys. 39, 213. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Baselyan, L.L., Goncharov, N.Y., Zaitsev, V.V., Zinichev, V.A., Rapoport, V.O., Tsybko, Y.G.: 1974, Frequency and time splitting of decameter solar radio bursts. II: Chains. Solar Phys. 39, 223. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Benz, A.O.: 2008, Flare observations. Living Rev. Solar Phys. 5, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Bhonsle, R.V., Sawant, H.S., Degaonkar, S.S.: 1979, Exploration of the solar corona by high resolution solar decametric observations. Space Sci. Rev. 24, 259. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Brazhenko, A.I., Melnik, V.N., Frantsuzenko, A.V., Dorovskyy, V.V., Rucker, H.O., Panchenko, M.: 2015, On the harmonic coupling of components in pairs of IIIb – III bursts at decameter wavelengths. Radio Phys. Radio Astron. 20, 99. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Chen, X., Kontar, E.P., Yu, S., Yan, Y., Huang, J., Tan, B.: 2018, Fine structures of solar radio type III bursts and their possible relationship with coronal density turbulence. Astrophys. J. 856, 73. DOI. ADS. ADSCrossRefGoogle Scholar
  12. de La Noe, J., Boischot, A.: 1972, The type iii b burst. Astron. Astrophys. 20, 55. ADS. ADSGoogle Scholar
  13. Ellis, G.R.A.: 1969, Fine structure in the spectra of solar radio bursts. Aust. J. Phys. 22, 177. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Ellis, G.R.A., McCulloch, P.M.: 1967, Frequency splitting of solar radio bursts. Aust. J. Phys. 20, 583. ADS. ADSCrossRefGoogle Scholar
  15. Holman, G.D., Aschwanden, M.J., Aurass, H., Battaglia, M., Grigis, P.C., Kontar, E.P., Liu, W., Saint-Hilaire, P., Zharkova, V.V.: 2011, Implications of x-ray observations for electron acceleration and propagation in solar flares. Space Sci. Rev. 159, 107. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Klassen, A., Gómez-Herrero, R., Heber, B.: 2011, Electron spikes, type III radio bursts and EUV jets on 22 February 2010. Solar Phys. 273, 413. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Kolotkov, D.Y., Nakariakov, V.M., Kontar, E.P.: 2018, The origin of the modulation of the radio emission from the solar corona by a fast magnetoacoustic wave. Astrophys. J. 861, 33. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Kontar, E.P.: 2001, Dynamics of electron beams in the solar corona plasma with density fluctuations. Astron. Astrophys. 375, 629. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Kontar, E.P., Yu, S., Kuznetsov, A.A., Emslie, A.G., Alcock, B., Jeffrey, N.L.S., Melnik, V.N., Bian, N.H., Subramanian, P.: 2017, Imaging spectroscopy of solar radio burst fine structures. Nat. Commun. 8, 1515. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Krucker, S., Kontar, E.P., Christe, S., Lin, R.P.: 2007, Solar flare electron spectra at the Sun and near the Earth. Astrophys. J. Lett. 663, L109. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Krüger, A.: 1984, Introduction to Solar Radio Astronomy and Radio Physics, Reidel, Dordrecht. Google Scholar
  22. Krupar, V., Maksimovic, M., Santolik, O., Kontar, E.P., Cecconi, B., Hoang, S., Kruparova, O., Soucek, J., Reid, H., Zaslavsky, A.: 2014, Statistical survey of type III radio bursts at long wavelengths observed by the Solar TErrestrial RElations Observatory (STEREO)/waves instruments: Radio flux density variations with frequency. Solar Phys. 289, 3121. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Lin, R.P.: 1974, Non-relativistic solar electrons. Space Sci. Rev. 16, 189. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Lin, R.P.: 1985, Energetic solar electrons in the interplanetary medium. Solar Phys. 100, 537. DOI. ADS. ADSCrossRefGoogle Scholar
  25. McLean, D.J., Labrum, N.R.: 1985, Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths, Cambridge University Press, Cambridge. Google Scholar
  26. Melrose, D.B.: 1982, Fine structures in decametric noise storms: Possible mechanisms. In: Benz, A.O., Zlobec, P. (eds.) Solar Radio Storms, CESRA Workshop No. 4, 182. ADS. Google Scholar
  27. Morosan, D.E., Gallagher, P.T., Zucca, P., Fallows, R., Carley, E.P., Mann, G., Bisi, M.M., Kerdraon, A., Konovalenko, A.A., MacKinnon, A.L., et al.: 2014, LOFAR tied-array imaging of type III solar radio bursts. Astron. Astrophys. 568, A67. DOI. ADS. CrossRefGoogle Scholar
  28. Morosan, D.E., Gallagher, P.T., Zucca, P., O’Flannagain, A., Fallows, R., Reid, H., Magdalenić, J., Mann, G., Bisi, M.M., Kerdraon, A., et al.: 2015, LOFAR tied-array imaging and spectroscopy of solar S bursts. Astron. Astrophys. 580, A65. DOI. ADS. CrossRefGoogle Scholar
  29. Mugundhan, V., Hariharan, K., Ramesh, R.: 2017, Solar type IIIb radio bursts as tracers for electron density fluctuations in the corona. Solar Phys. 292, 155. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Newkirk, G. Jr.: 1961, The solar corona in active regions and the thermal origin of the slowly varying component of solar radio radiation. Astrophys. J. 133, 983. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Pick, M., Vilmer, N.: 2008, Sixty-five years of solar radioastronomy: Flares, coronal mass ejections and Sun Earth connection. Astron. Astrophys. Rev. 16, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Régnier, S., Priest, E.R., Hood, A.W.: 2008, Coronal Alfvén speeds in an isothermal atmosphere. I. Global properties. Astron. Astrophys. 491, 297. DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  33. Reid, H.A.S., Kontar, E.P.: 2017, Imaging spectroscopy of type U and J solar radio bursts with LOFAR. Astron. Astrophys. 606, A141. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Roberts, B.: 2000, Waves and oscillations in the corona – (Invited review). Solar Phys. 193, 139. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Stappers, B.W., Hessels, J.W.T., Alexov, A., Anderson, K., Coenen, T., Hassall, T., Karastergiou, A., Kondratiev, V.I., Kramer, M., van Leeuwen, J., et al.: 2011, Observing pulsars and fast transients with LOFAR. Astron. Astrophys. 530, A80. DOI. ADS. CrossRefGoogle Scholar
  36. Steinberg, J.L., Aubier-Giraud, M., Leblanc, Y., Boischot, A.: 1971, Coronal scattering, absorption and refraction of solar radiobursts. Astron. Astrophys. 10, 362. ADS. ADSGoogle Scholar
  37. Stewart, R.T.: 1975, An example of a fundamental type IIIb radio burst. Solar Phys. 40, 417. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Suzuki, S., Dulk, G.A.: 1985, In: McLean, D.J., Labrum, N.R. (eds.) Bursts of Type III and Type V, Cambridge University Press, Cambridge, 289. ADS. Google Scholar
  39. Takakura, T., Yousef, S.: 1975, Type IIIb radio bursts – 80 MHz source position and theoretical model. Solar Phys. 40, 421. DOI. ADS. ADSCrossRefGoogle Scholar
  40. van Haarlem, M.P., Wise, M.W., Gunst, A.W., Heald, G., McKean, J.P., Hessels, J.W.T., de Bruyn, A.G., Nijboer, R., Swinbank, J., Fallows, R., et al.: 2013, LOFAR: The LOw-Frequency ARray. Astron. Astrophys. 556, A2. DOI. ADS. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Space Research Institute (IKI)MoscowRussia
  2. 2.Institute of Solar-Terrestrial PhysicsIrkutskRussia
  3. 3.School of Astronomy and AstrophysicsGlasgow UniversityGlasgowUK

Personalised recommendations