Advertisement

Solar Physics

, 293:101 | Cite as

Solar Microflares Observed by SphinX and RHESSI

  • Tomasz Mrozek
  • Szymon Gburek
  • Marek Siarkowski
  • Barbara Sylwester
  • Janusz Sylwester
  • Anna Kepa
  • Magdalena Gryciuk
Article

Abstract

In 2009, the Russian Complex Orbital Observations Near-Earth of Activity of the Sun (CORONAS-Photon) spacecraft was launched, carrying the Polish Solar PHotometer In X-rays (SphinX). The SphinX was most sensitive in the spectral range 1.2 – 15 keV, thus an excellent opportunity appeared for comparison with the low-energy end of Ramaty High Energy Solar Spectroscopic Imager (RHESSI) spectra. Common spectral measurements with these instruments cover the range where most of the flare energy is accumulated. We have chosen four consecutive small solar events observed on 4 July 2009 at 13:43 UT, 13:48 UT, 13:52 UT, and 13:55 UT (RHESSI flare peak times) and used them to compare the data and results from the two instruments. Moreover, we included Geostationary Operational Environmental Satellite (GOES) records in our analysis. In practice, the range of comparison performed for SphinX and RHESSI is limited roughly to 3 – 6 keV. RHESSI fluxes measured with a use of one, four, and nine detectors in the 3 – 4 keV energy band agree with SphinX measurements. However, we observed that SphinX spectral irradiances are three times higher than those of RHESSI in the 4 – 6 keV energy band. This effect contributes to the difference in obtained emission measures, but the derived temperatures of plasma components are similar. RHESSI spectra were fitted using a model with two thermal components. We have found that the RHESSI hot component is in agreement with GOES, and the RHESSI hotter component fits the SphinX flaring component well. Moreover, we calculated the so-called thermodynamic measure and the total thermal energy content in the four microflares that we studied. The results obtained show that SphinX is a very sensitive complementary observatory for RHESSI and GOES.

Keywords

Flares, microflares and nanoflares Spectrum, X-ray Instrumental effects 

Notes

Acknowledgements

First, we thank the anonymous reviewer for very helpful comments that significantly improved the article. We wish to thank the SphinX Team for the really hard work and dedication, which has made this research possible. The SphinX spectrophotometer is a Polish instrument onboard the Russian Coronas-Photon spacecraft. The RHESSI spacecraft is a NASA Small Explorer (SMEX) mission. This work was supported by the Polish National Science Centre grant number 2015/19/B/ST9/02826.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Arzner, K.: 2002, Time-domain demodulation of RHESSI light curves. Solar Phys. 210, 213. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Awasthi, A.K., Sylwester, B., Sylwester, J., Jain, R.: 2016, Thermal characteristics and the differential emission measure distribution during a B8.3 flare on 2009 July 4. Astrophys. J. 823, 126. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Battaglia, M., Kontar, E.P.: 2013, Electron distribution functions in solar flares from combined X-ray and extreme-ultraviolet observations. Astrophys. J. 779, 107. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Beuermann, K., Burwitz, V., Rauch, T.: 2006, Soft X-ray standards (Beuermann+, 2006). VizieR Online Data Cat. 345, 80541. ADS. ADSGoogle Scholar
  5. Farnik, F., Valnicek, B., Sylwester, B., Sylwester, J., Jakimiec, J.: 1984, Comparison of energy calibration of Prognoz 5, 6, 7, and 8 and other hard-X-ray solar photometers. Bull. Astron. Inst. Czechoslov. 35, 158. ADS. ADSGoogle Scholar
  6. Friedman, H., Lichtman, S.W., Byram, E.T.: 1951, Photon counter measurements of solar X-rays and extreme ultraviolet light. Phys. Rev. E 83, 1025. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Gburek, S., Mrozek, T., Siarkowski, M., Sylwester, J.: 2008, Spectroscopic analysis of the solar flare event on 2002 August 3 with the use of RHESSI and RESIK data. Adv. Space Res. 42, 822. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Gburek, S., Sylwester, J., Kowalinski, M., Bakala, J., Kordylewski, Z., Podgorski, P., Plocieniak, S., Siarkowski, M., Sylwester, B., Trzebinski, W., Kuzin, S.V., Pertsov, A.A., Kotov, Y.D., Farnik, F., Reale, F., Phillips, K.J.H.: 2011, SphinX soft X-ray spectrophotometer: science objectives, design and performance. Solar Syst. Res. 45, 189. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Gburek, S., Sylwester, J., Kowalinski, M., Bakala, J., Kordylewski, Z., Podgorski, P., Plocieniak, S., Siarkowski, M., Sylwester, B., Trzebinski, W., Kuzin, S.V., Pertsov, A.A., Kotov, Y.D., Farnik, F., Reale, F., Phillips, K.J.H.: 2013, SphinX: the solar photometer in X-rays. Solar Phys. 283, 631. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, M., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J., Rutledge, H., Barbera, M., Peres, G., Varisco, S.: 2007, The X-ray telescope (XRT) for the Hinode mission. Solar Phys. 243, 63. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Huovelin, J., Alha, L., Andersson, H., Andersson, T., Browning, R., Drummond, D., Foing, B., Grande, M., Hämäläinen, K., Laukkanen, J., Lämsä, V., Muinonen, K., Murray, M., Nenonen, S., Salminen, A., Sipilä, H., Taylor, I., Vilhu, O., Waltham, N., Lopez-Jorkama, M.: 2002, The SMART-1 X-ray solar monitor (XSM): calibrations for D-CIXS and independent coronal science. Planet. Space Sci. 50, 1345. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Jain, R., Dave, H., Shah, A.B., Vadher, N.M., Shah, V.M., Ubale, G.P., Manian, K.S.B., Solanki, C.M., Shah, K.J., Kumar, S., Kayasth, S.L., Patel, V.D., Trivedi, J.J., Deshpande, M.R.: 2005, Solar X-ray spectrometer (Soxs) mission on board GSAT2 Indian spacecraft: the low-energy payload. Solar Phys. 227, 89. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Jain, R., Pradhan, A.K., Joshi, V., Shah, K.J., Trivedi, J.J., Kayasth, S.L., Shah, V.M., Deshpande, M.R.: 2006, The Fe-line feature in the X-ray spectrum of solar flares: first results from the SOXS mission. Solar Phys. 239, 217. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Kotov, Y.D.: 2011, Scientific goals and observational capabilities of the CORONAS-PHOTON solar satellite project. Solar Syst. Res. 45, 93. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Kulinová, A., Kašparová, J., Dzifčáková, E., Sylwester, J., Sylwester, B., Karlický, M.: 2011, Diagnostics of non-thermal distributions in solar flare spectra observed by RESIK and RHESSI. Astron. Astrophys. 533, A81. DOI. ADS. CrossRefGoogle Scholar
  17. Kuzin, S.V., Zhitnik, I.A., Shestov, S.V., Bogachev, S.A., Bugaenko, O.I., Ignat’ev, A.P., Pertsov, A.A., Ulyanov, A.S., Reva, A.A., Slemzin, V.A., Sukhodrev, N.K., Ivanov, Y.S., Goncharov, L.A., Mitrofanov, A.V., Popov, S.G., Shergina, T.A., Solov’ev, V.A., Oparin, S.N., Zykov, A.M.: 2011, The TESIS experiment on the CORONAS-PHOTON spacecraft. Solar Syst. Res. 45, 162. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Landi, E., Del Zanna, G., Young, P.R., Dere, K.P., Mason, H.E.: 2012, CHIANTI – an atomic database for emission lines. XII. Version 7 of the database. Astrophys. J. 744, 99. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Landolt, A.U.: 2007, UBVRI photometric standard stars around the sky at \(-50{\deg }\) declination. Astron. J. 133, 2502. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty high-energy solar spectroscopic imager (RHESSI). Solar Phys. 210, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  21. McTiernan, J.M.: 2009, RHESSI/GOES observations of the nonflaring Sun from 2002 to 2006. Astrophys. J. 697, 94. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Pina, R.K., Puetter, R.C.: 1993, Bayesian image reconstruction – the pixon and optimal image modeling. Publ. Astron. Soc. Pac. 105, 630. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Richter, M., Gottwald, A., Scholze, F., Thornagel, R., Ulm, G.: 2006, Calibration of space instrumentation with synchrotron radiation. Adv. Space Res. 37, 265. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Smith, D.M., Lin, R.P., Turin, P., Curtis, D.W., Primbsch, J.H., Campbell, R.D., Abiad, R., Schroeder, P., Cork, C.P., Hull, E.L., Landis, D.A., Madden, N.W., Malone, D., Pehl, R.H., Raudorf, T., Sangsingkeow, P., Boyle, R., Banks, I.S., Shirey, K., Schwartz, R.: 2002, The RHESSI spectrometer. Solar Phys. 210, 33. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Sylwester, J., Garcia, H.A., Sylwester, B.: 1995, Quantitative interpretation of GOES soft X-ray measurements. I. The isothermal approximation: application of various atomic data. Astron. Astrophys. 293, 577. ADS. ADSGoogle Scholar
  26. Sylwester, J., Kuzin, S., Kotov, Y.D., Farnik, F., Reale, F.: 2008, SphinX: a fast solar photometer in X-rays. J. Astrophys. Astron. 29, 339. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Sylwester, B., Sylwester, J., Siarkowski, M., Engell, A.J., Kuzin, S.V.: 2011, Physical characteristics of AR 11024 plasma based on SPHINX and XRT data. Cent. Eur. Astrophys. Bull. 35, 171. ADS. ADSGoogle Scholar
  28. Sylwester, J., Kowalinski, M., Gburek, S., Siarkowski, M., Kuzin, S., Farnik, F., Reale, F., Phillips, K.J.H., Bakała, J., Gryciuk, M., Podgorski, P., Sylwester, B.: 2012, SphinX measurements of the 2009 solar minimum X-ray emission. Astrophys. J. 751, 111. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Väänänen, M., Alha, L., Huovelin, J.: 2009, Cross-calibration of SMART-1 XSM with GOES and RHESSI. Solar Phys. 260, 479. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Veres, P., Ripa, J., Wigger, C.: 2009, The effect of annealing on the RHESSI gamma-ray detectors. ADS.
  31. Watanabe, K., Masuda, S., Segawa, T.: 2012, Hinode flare catalogue. Solar Phys. 279, 317. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Wuelser, J.-P., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., Duncan, D.W., Gradwohl, G.S., Meyer, S.B., Moore, A.S., Navarro, R.L., Pearson, J.D., Rossi, G.R., Springer, L.A., Howard, R.A., Moses, J.D., Newmark, J.S., Delaboudiniere, J.-P., Artzner, G.E., Auchere, F., Bougnet, M., Bouyries, P., Bridou, F., Clotaire, J.-Y., Colas, G., Delmotte, F., Jerome, A., Lamare, M., Mercier, R., Mullot, M., Ravet, M.-F., Song, X., Bothmer, V., Deutsch, W.: 2004, EUVI: the STEREO-SECCHI extreme ultraviolet imager. In: Fineschi, S., Gummin, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 5171, 111. DOI. ADS. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Solar Physics DivisionSpace Research Centre Polish Academy of SciencesWrocławPoland
  2. 2.Astronomical InstituteUniversity of WrocławWrocławPoland

Personalised recommendations