Advertisement

Solar Physics

, 293:96 | Cite as

Testing and Improving a Set of Morphological Predictors of Flaring Activity

  • Ioannis KontogiannisEmail author
  • Manolis K. Georgoulis
  • Sung-Hong Park
  • Jordan A. Guerra
Article

Abstract

Efficient prediction of solar flares relies on parameters that quantify the eruptive capability of solar active regions. Several such quantitative predictors have been proposed in the literature, inferred mostly from photospheric magnetograms and/or white-light observations. Two of them are the Ising energy and the sum of the total horizontal magnetic field gradient. The former has been developed from line-of-sight magnetograms, while the latter uses sunspot detections and characteristics, based on continuum images. Aiming to include these parameters in an automated prediction scheme, we test their applicability on regular photospheric magnetic field observations provided by the Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO). We test their efficiency as predictors of flaring activity on a representative sample of active regions and investigate possible modifications of these quantities. The Ising energy appears to be an efficient predictor, and the efficiency is even improved if it is modified to describe interacting magnetic partitions or sunspot umbrae. The sum of the horizontal magnetic field gradient appears to be slightly more promising than the three variations of the Ising energy we implement in this article. The new predictors are also compared with two very promising predictors: the effective connected magnetic field strength and the total unsigned non-neutralized current. Our analysis shows that the efficiency of morphological predictors depends on projection effects in a nontrivial way. All four new predictors are found useful for inclusion in an automated flare forecasting facility, such as the Flare Likelihood and Region Eruption Forecasting (FLARECAST), but their utility, among others, will ultimately be determined by the validation effort underway in the framework of the FLARECAST project.

Keywords

Active regions, magnetic fields Flares, forecasting 

Notes

Acknowledgements

This research has been funded by the European Union’s Horizon2020 research and innovation program Flare Likelihood and Region Eruption Forecasting” (FLARECAST) project, under grant agreement No. 640216. The data used are courtesy of NASA/SDO, the HMI science team, and the Geostationary Operational Environmental Satellite (GOES) team. This work also used data provided by the MEDOC data and operations centre (CNES/CNRS/Univ. Paris-Sud), http://medoc.ias.u-psud.fr/ . We thank the anonymous referees for their valuable comments.

Disclosure of Potential Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Ahmed, O., Qahwaji, R., Colak, T., Dudok De Wit, T., Ipson, S.: 2010, A new technique for the calculation and 3D visualisation of magnetic complexities on solar satellite images. Vis. Comput. 26, 385. DOI. CrossRefGoogle Scholar
  2. Baranyi, T., Győri, L., Ludmány, A.: 2016, On-line tools for solar data compiled at the Debrecen Observatory and their extensions with the Greenwich sunspot data. Solar Phys. 291, 3081. DOI. ADS. CrossRefGoogle Scholar
  3. Barnes, G., Longcope, D.W., Leka, K.D.: 2005, Implementing a magnetic charge topology model for solar active regions. Astrophys. J. 629, 561. DOI. ADS. CrossRefGoogle Scholar
  4. Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., Leka, K.D.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs – Space-Weather HMI Active Region Patches. Solar Phys. 289, 3549. DOI. ADS. CrossRefGoogle Scholar
  5. Falconer, D.A., Moore, R.L., Gary, G.A.: 2008, Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity. Astrophys. J. 689, 1433. DOI. ADS. CrossRefGoogle Scholar
  6. Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q., Gallagher, P., Grigis, P.T., Ji, H., Liu, W., Milligan, R.O., Temmer, M.: 2011, An observational overview of solar flares. Space Sci. Rev. 159, 19. DOI. ADS. CrossRefGoogle Scholar
  7. Florios, K., Kontogiannis, I., Park, S.-H., Guerra, J.A., Benvenuto, F., Bloomfield, D.S., Georgoulis, M.K.: 2018, Forecasting solar flares using magnetogram-based predictors and machine learning. Solar Phys. 293, 28. DOI. CrossRefGoogle Scholar
  8. Georgoulis, M.K.: 2012a, Are solar active regions with major flares more fractal, multifractal, or turbulent than others? Solar Phys. 276, 161. DOI. ADS. CrossRefGoogle Scholar
  9. Georgoulis, M.K.: 2012b, On our ability to predict major solar flares. Astrophys. Space Sci. Proc. 30, 93. DOI. ADS. CrossRefGoogle Scholar
  10. Georgoulis, M.K., Rust, D.M.: 2007, Quantitative forecasting of major solar flares. Astrophys. J. Lett. 661, L109. DOI. ADS. CrossRefGoogle Scholar
  11. Georgoulis, M.K., Titov, V.S., Mikić, Z.: 2012, Non-neutralized electric current patterns in solar active regions: Origin of the shear-generating Lorentz force. Astrophys. J. 761, 61. DOI. ADS. CrossRefGoogle Scholar
  12. Guerra, J.A., Park, S.-H., Gallagher, P.T., Kontogiannis, I., Georgoulis, M.K., Bloomfield, D.S.: 2018, Active region photospheric magnetic properties derived from line-of-sight and radial fields. Solar Phys. 293, 9. DOI. ADS. CrossRefGoogle Scholar
  13. Gyori, L.: 1998, Automation of area measurement of sunspots. Solar Phys. 180, 109. DOI. ADS. CrossRefGoogle Scholar
  14. Hayes, L.A., Gallagher, P.T., McCauley, J., Dennis, B.R., Ireland, J., Inglis, A.: 2017, Pulsations in the Earth’s lower ionosphere synchronized with solar flare emission. J. Geophys. Res. 122, 9841. DOI. ADS. CrossRefGoogle Scholar
  15. Hoeksema, J.T., Liu, Y., Hayashi, K., Sun, X., Schou, J., Couvidat, S., Norton, A., Bobra, M., Centeno, R., Leka, K.D., Barnes, G., Turmon, M.: 2014, The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: Overview and performance. Solar Phys. 289, 3483. DOI. ADS. CrossRefGoogle Scholar
  16. Kontogiannis, I., Georgoulis, M.K., Park, S.-H., Guerra, J.A.: 2017, Non-neutralized electric currents in solar active regions and flare productivity. Solar Phys. 292, 159. DOI. ADS. CrossRefGoogle Scholar
  17. Korsós, M.B., Baranyi, T., Ludmány, A.: 2014, Pre-flare dynamics of sunspot groups. Astrophys. J. 789, 107. DOI. ADS. CrossRefGoogle Scholar
  18. Korsós, M.B., Erdélyi, R.: 2016, On the state of a solar active region before flares and CMEs. Astrophys. J. 823, 153. DOI. ADS. CrossRefGoogle Scholar
  19. Korsós, M.B., Ludmány, A., Erdélyi, R., Baranyi, T.: 2015, On flare predictability based on sunspot group evolution. Astrophys. J. Lett. 802, L21. DOI. ADS. CrossRefGoogle Scholar
  20. Padinhatteeri, S., Higgins, P.A., Bloomfield, D.S., Gallagher, P.T.: 2016, Automatic detection of magnetic \(\delta \) in sunspot groups. Solar Phys. 291, 41. DOI. ADS. CrossRefGoogle Scholar
  21. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS. CrossRefGoogle Scholar
  22. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler Imager. Solar Phys. 162, 129. DOI. ADS. CrossRefGoogle Scholar
  23. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI. ADS. CrossRefGoogle Scholar
  24. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI. ADS. CrossRefGoogle Scholar
  25. Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655, L117. DOI. ADS. CrossRefGoogle Scholar
  26. Schrijver, C.J.: 2016, The nonpotentiality of coronae of solar active regions, the dynamics of the surface magnetic field, and the potential for large flares. Astrophys. J. 820, 103. DOI. ADS. CrossRefGoogle Scholar
  27. Tziotziou, K., Georgoulis, M.K., Liu, Y.: 2013, Interpreting eruptive behavior in NOAA AR 11158 via the region’s magnetic energy and relative-helicity budgets. Astrophys. J. 772, 115. DOI. ADS. CrossRefGoogle Scholar
  28. Tziotziou, K., Sandberg, I., Anastasiadis, A., Daglis, I.A., Nieminen, P.: 2010, Using a new set of space-borne particle monitors to investigate solar-terrestrial relations. Astron. Astrophys. 514, A21. DOI. ADS. CrossRefGoogle Scholar
  29. Wheatland, M.S.: 2005, Initial test of a Bayesian approach to solar flare prediction. Publ. Astron. Soc. Aust. 22, 153. DOI. ADS. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Research Center for Astronomy and Applied Mathematics (RCAAM)Academy of AthensAthensGreece
  2. 2.School of PhysicsTrinity College DublinDublinIreland
  3. 3.Institute for Space-Earth Environmental ResearchNagoya UniversityNagoyaJapan
  4. 4.Physics DepartmentVillanova UniversityVillanovaUSA

Personalised recommendations