Solar Physics

, 293:92 | Cite as

Computation of Relative Magnetic Helicity in Spherical Coordinates

  • Kostas MoraitisEmail author
  • Étienne Pariat
  • Antonia Savcheva
  • Gherardo Valori


Magnetic helicity is a quantity of great importance in solar studies because it is conserved in ideal magnetohydrodynamics. While many methods for computing magnetic helicity in Cartesian finite volumes exist, in spherical coordinates, the natural coordinate system for solar applications, helicity is only treated approximately. We present here a method for properly computing the relative magnetic helicity in spherical geometry. The volumes considered are finite, of shell or wedge shape, and the three-dimensional magnetic field is considered to be fully known throughout the studied domain. Testing of the method with well-known, semi-analytic, force-free magnetic-field models reveals that it has excellent accuracy. Further application to a set of nonlinear force-free reconstructions of the magnetic field of solar active regions and comparison with an approximate method used in the past indicates that the proposed method can be significantly more accurate, thus making our method a promising tool in helicity studies that employ spherical geometry. Additionally, we determine and discuss the applicability range of the approximate method.


Magnetic fields, Models Helicity, Magnetic Magnetic fields, Corona 



E. Pariat and K. Moraitis acknowledge the support of the French Agence Nationale pour la Recherche through the HELISOL project, contract no. ANR-15-CE31-0001. G. Valori acknowledges the support of the Leverhulme Trust Research Project Grant 2014-051. A. Savcheva was funded by NASA HSR grant NNX16AH87G.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Adams, J.: 1989, MUDPACK: multigrid fortran software for the efficient solution of linear elliptic partial differential equations. Appl. Math. Comput. 34, 113. DOI. zbMATHGoogle Scholar
  2. Amari, T., Aly, J.-J., Canou, A., Mikic, Z.: 2013, Reconstruction of the solar coronal magnetic field in spherical geometry. Astron. Astrophys. 553, A43. DOI. ADS. CrossRefGoogle Scholar
  3. Berger, M.A., Field, G.B.: 1984, The topological properties of magnetic helicity. J. Fluid Mech. 147, 133. DOI. ADS. ADSMathSciNetCrossRefGoogle Scholar
  4. Bobra, M.G., van Ballegooijen, A.A., DeLuca, E.E.: 2008, Modeling nonpotential magnetic fields in solar active regions. Astrophys. J. 672, 1209. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Brandenburg, A., Subramanian, K.: 2005, Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1. DOI. ADS. ADSMathSciNetCrossRefGoogle Scholar
  6. Brown, M., Canfield, R., Field, G., Kulsrud, R., Pevtsov, A., Rosner, R., Seehafer, N.: 1999, Magnetic Helicity in Space and Laboratory Plasmas: Editorial Summary 111, AGU, Washington, 301. DOI. ADS. Google Scholar
  7. Dasgupta, B., Janaki, M.S., Bhattacharyya, R., Dasgupta, P., Watanabe, T., Sato, T.: 2002, Spheromak as a relaxed state with minimum dissipation. Phys. Rev. E 65(4), 046405. DOI. ADS. ADSCrossRefGoogle Scholar
  8. DeVore, C.R.: 2000, Magnetic helicity generation by solar differential rotation. Astrophys. J. 539, 944. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Fan, Y.: 2010, On the eruption of coronal flux ropes. Astrophys. J. 719, 728. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Fan, Y.: 2016, Modeling the initiation of the 2006 December 13 coronal mass ejection in AR 10930: the structure and dynamics of the erupting flux rope. Astrophys. J. 824, 93. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Finn, J.M., Antonsen, T.M.: 1985, Magnetic helicity: what is it and what is it good for? Comments Plasma Phys. Control. Fusion 9, 111. Google Scholar
  12. Gilchrist, S.A., Wheatland, M.S.: 2014, Nonlinear force-free modeling of the corona in spherical coordinates. Solar Phys. 289, 1153. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Ji, H., Prager, S.C., Sarff, J.S.: 1995, Conservation of magnetic helicity during plasma relaxation. Phys. Rev. Lett. 74, 2945. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Karpen, J.T., DeVore, C.R., Antiochos, S.K., Pariat, E.: 2017, Reconnection-driven coronal-hole jets with gravity and solar wind. Astrophys. J. 834, 62. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Kliem, B., Su, Y.N., van Ballegooijen, A.A., DeLuca, E.E.: 2013, Magnetohydrodynamic modeling of the solar eruption on 2010 April 8. Astrophys. J. 779, 129. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Low, B.C., Lou, Y.Q.: 1990, Modeling solar force-free magnetic fields. Astrophys. J. 352, 343. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Masson, S., Antiochos, S.K., DeVore, C.R.: 2013, A model for the escape of solar-flare-accelerated particles. Astrophys. J. 771, 82. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Moraitis, K., Tziotziou, K., Georgoulis, M.K., Archontis, V.: 2014, Validation and benchmarking of a practical free magnetic energy and relative magnetic helicity budget calculation in solar magnetic structures. Solar Phys. 289, 4453. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Pariat, E., Valori, G., Démoulin, P., Dalmasse, K.: 2015, Testing magnetic helicity conservation in a solar-like active event. Astron. Astrophys. 580, A128. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Pariat, E., Leake, J.E., Valori, G., Linton, M.G., Zuccarello, F.P., Dalmasse, K.: 2017, Relative magnetic helicity as a diagnostic of solar eruptivity. Astron. Astrophys. 601, A125. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Polito, V., Del Zanna, G., Valori, G., Pariat, E., Mason, H.E., Dudík, J., Janvier, M.: 2017, Analysis and modelling of recurrent solar flares observed with Hinode/EIS on March 9, 2012. Astron. Astrophys. 601, A39. DOI. ADS. CrossRefGoogle Scholar
  22. Rust, D.M.: 1994, Spawning and shedding helical magnetic fields in the solar atmosphere. Geophys. Res. Lett. 21, 241. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Savcheva, A., Pariat, E., McKillop, S., McCauley, P., Hanson, E., Su, Y., Werner, E., DeLuca, E.E.: 2015, The relation between solar eruption topologies and observed flare features. I. Flare ribbons. Astrophys. J. 810, 96. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Savcheva, A., Pariat, E., McKillop, S., McCauley, P., Hanson, E., Su, Y., DeLuca, E.E.: 2016, The relation between solar eruption topologies and observed flare features. II. Dynamical evolution. Astrophys. J. 817, 43. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Schrijver, C.J., De Rosa, M.L., Metcalf, T.R., Liu, Y., McTiernan, J., Régnier, S., Valori, G., Wheatland, M.S., Wiegelmann, T.: 2006, Nonlinear force-free modeling of coronal magnetic fields part I: a quantitative comparison of methods. Solar Phys. 235, 161. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Swarztrauber, P.N., Sweet, R.A.: 1979, Algorithm 541: efficient Fortran subprograms for the solution of separable elliptic partial differential equations. ACM Trans. Math. Softw. 5, 352. DOI. CrossRefzbMATHGoogle Scholar
  27. Taylor, J.B.: 1974, Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 1139. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Thalmann, J.K., Inhester, B., Wiegelmann, T.: 2011, Estimating the relative helicity of coronal magnetic fields. Solar Phys. 272, 243. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Tziotziou, K., Moraitis, K., Georgoulis, M.K., Archontis, V.: 2014, Validation of the magnetic energy vs. helicity scaling in solar magnetic structures. Astron. Astrophys. Lett. 570, L1. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Valori, G., Démoulin, P., Pariat, E.: 2012, Comparing values of the relative magnetic helicity in finite volumes. Solar Phys. 278, 347. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Valori, G., Démoulin, P., Pariat, E., Masson, S.: 2013, Accuracy of magnetic energy computations. Astron. Astrophys. 553, A38. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Valori, G., Pariat, E., Anfinogentov, S., Chen, F., Georgoulis, M.K., Guo, Y., Liu, Y., Moraitis, K., Thalmann, J.K., Yang, S.: 2016, Magnetic helicity estimations in models and observations of the solar magnetic field. Part I: finite volume methods. Space Sci. Rev. 201, 147. DOI. ADS. ADSCrossRefGoogle Scholar
  33. van Ballegooijen, A.A.: 2004, Observations and modeling of a filament on the Sun. Astrophys. J. 612, 519. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Wheatland, M.S., Sturrock, P.A., Roumeliotis, G.: 2000, An optimization approach to reconstructing force-free fields. Astrophys. J. 540, 1150. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Woltjer, L.: 1958, A theorem on force-free magnetic fields. Proc. Natl. Acad. Sci. 44, 489. DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. Yang, S., Büchner, J., Santos, J.C., Zhang, H.: 2013, Evolution of relative magnetic helicity: method of computation and its application to a simulated solar corona above an active region. Solar Phys. 283, 369. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Yeates, A.R., Hornig, G.: 2016, The global distribution of magnetic helicity in the solar corona. Astron. Astrophys. 594, A98. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.LESIA, Observatoire de Paris, PSL Research UniversityCNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris CitéMeudonFrance
  2. 2.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  3. 3.Mullard Space Science LaboratoryUniversity College LondonSurreyUK

Personalised recommendations