Solar Physics

, 293:81 | Cite as

Automated Solar Flare Detection and Feature Extraction in High-Resolution and Full-Disk H\(\upalpha\) Images

  • Meng Yang
  • Yu Tian
  • Yangyi Liu
  • Changhui Rao


In this article, an automated solar flare detection method applied to both full-disk and local high-resolution H\(\upalpha\) images is proposed. An adaptive gray threshold and an area threshold are used to segment the flare region. Features of each detected flare event are extracted, e.g. the start, peak, and end time, the importance class, and the brightness class. Experimental results have verified that the proposed method can obtain more stable and accurate segmentation results than previous works on full-disk images from Big Bear Solar Observatory (BBSO) and Kanzelhöhe Observatory for Solar and Environmental Research (KSO), and satisfying segmentation results on high-resolution images from the Goode Solar Telescope (GST). Moreover, the extracted flare features correlate well with the data given by KSO. The method may be able to implement a more complicated statistical analysis of H\(\upalpha\) solar flares.


Flares, dynamics Chromosphere, active Instrumentation and data management 



We are grateful to the referee for constructive comments and suggestions on our work and manuscript. This work was supported by the Natural National Science Foundation of China (No. 11727805 and No. 11703029) and the Laboratory Innovation Foundation of the Chinese Academy of Sciences (Grant No. YJ16K006). The BBSO operation is supported by NJIT, US NSF AGS-1250818, and NASA NNX13AG14G grants, and the GST operation is partly supported by the Korea Astronomy and Space Science Institute and Seoul National University and by the strategic priority research program of CAS with Grant No. XDB09000000. Part of the H\(\upalpha\) data used in this article were provided by the Kanzelhöhe Observatory, University of Graz, Austria.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Benz, A.O.: 2017, Flare observations. Living Rev. Solar Phys. 14, 2. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Berkebile-Stoiser, S., Gömöry, P., Veronig, A.M., Rybàk, J., Sütterlin, P.: 2009, Multi-wavelength fine structure and mass flows in solar microflares. Astron. Astrophys. 505, 811. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Bloomfield, D.S., Gallagher, P.T., Marquette, W.H., Milligan, R.O., Canfield, R.C.: 2016, Performance of major flare watches from the Max Millennium Program (2001 – 2010). Solar Phys. 291, 411. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Borda, R.A.F., Mininni, P.D., Gómez, D.O., Bauer, O.H., Rovira, M.G.: 2002, Automatic solar flare detection using neural network techniques. Solar Phys. 206, 347. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Caballero, C., Aranda, M.C.: 2014, Automatic tracking of active regions and detection of solar flares in solar EUV images. Solar Phys. 289, 1643. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Canny, J.: 1986, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679. DOI. CrossRefGoogle Scholar
  7. Cao, W., Gorceix, N., Coulter, R., Ahn, K., Rimmele, T.R., Goode, P.R.: 2010, Scientific instrumentation for the 1.6 m New Solar Telescope in Big Bear. Astron. Nachr. 331, 636. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Denker, C., Johannesson, A., Marquette, W., Goode, P.R., Wang, H., Zirin, H.: 1999, Synoptic H\(\upalpha\) full-disk observations of the Sun from Big Bear Solar Observatory – I. Instrumentation, image processing, data products, and first results. Solar Phys. 184, 87. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Gill, C.D., Fletcher, L., Marshall, S.: 2010, Using active contours for semi-automated tracking of UV and EUV solar flare ribbons. Solar Phys. 262, 355. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Hannah, I.G., Hudson, H.S., Battaglia, M., Christe, S., Kašparová, J., Krucker, S., Kundu, M.R., Veronig, A.: 2011, Microflares and the statistics of X-ray flares. Solar Phys. 159, 263. DOI. ADS. Google Scholar
  11. Kirk, M.S., Balasubramaniam, K.S., Jackiewicz, J., McNamara, B.J., McAteer, R.T.J.: 2013, An automated algorithm to distinguish and characterize solar flares and associated sequential chromospheric brightenings. Solar Phys. 283, 97. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Kraaikamp, E., Verbeeck, C.: 2015, Solar Demon – an approach to detecting flares, dimmings, and EUV waves on SDO/AIA images. J. Space Weather Space Clim. 5, A18. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Maurya, R.A., Ambastha, A.: 2010, A technique for automated determination of flare ribbon separation and energy release. Solar Phys. 262, 337. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Piazzesi, R., Berrilli, F., Del Moro, D., Egidi, A.: 2012, Algorithm for real time flare detection. Mem. Soc. Astron. Ital. Suppl. 19, 109. ADS. ADSGoogle Scholar
  15. Pötzi, W., Polanec, W., Temmer, M.: 2013, The Kanzelhöhe Online Data Archive. Cent. Eur. Astrophys. Bull. 37, 655. ADS. ADSGoogle Scholar
  16. Pötzi, W., Veronig, A.M., Riegler, G., Amerstorfer, U., Pock, T., Temmer, M., Polanec, W., Baumgartner, D.J.: 2015, Real-time flare detection in ground-based H\(\upalpha\) imaging at Kanzelhöhe Observatory. Solar Phys. 290, 951. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Qu, M., Shih, F., Jing, J., Wang, H.: 2003, Automatic solar flare detection using MLP, RBF, and SVM. Solar Phys. 217, 157. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Qu, M., Shih, F., Jing, J., Wang, H.: 2004, Automatic solar flare tracking using image-processing techniques. Solar Phys. 222, 137. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Saba, J.L.R., Gaeng, T., Tarbell, T.D.: 2006, Analysis of solar flare ribbon evolution a semiautomated approach. Astrophys. J. 641, 1197. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Sui, L., Holman, G.D., Dennis, B.R.: 2004, Evidence for magnetic reconnection in three homologous solar flares observed by RHESSI. Astrophys. J. 612, 546. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Švestka, Z.: 1976, Solar Flares, Reidel, Dordrecht, 399. 978-90-277-0663-8. DOI. CrossRefGoogle Scholar
  22. Temmer, M., Veronig, A., Hanslmeier, A., Otruba, W., Messerotti, M.: 2001, Statistical analysis of solar H\(\upalpha\) flares. Astron. Astrophys. 375, 1049. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Veronig, A., Steinegger, M., Otruba, W., Hanslmeier, A., Messerotti, M., Temmer, M., Brunner, G., Gonzi, S.: 2000, Automatic image segmentation and feature detection in solar full-disk images. In: Solar and Space Weather Euroconference, ESA SP 463, 455. ADS. Google Scholar
  24. Wittman, T.M.: 2012, A quantitative analysis of solar flare characteristics as observed in the solar observing optical network and the global oscillation network group. Master’s thesis, Air Force Institute of Technology. Google Scholar
  25. Zharkova, V., Ipson, S., Zharkov, S., Benkhalil, A., Aboudarham, J., Bentley, R.: 2003, A full-disk image standardisation of the synoptic solar observations at the Meudon Observatory. Solar Phys. 214, 89. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Meng Yang
    • 1
    • 2
    • 3
  • Yu Tian
    • 1
    • 2
  • Yangyi Liu
    • 1
    • 2
  • Changhui Rao
    • 1
    • 2
  1. 1.Key Laboratory on Adaptive OpticsChinese Academy of SciencesChengduChina
  2. 2.Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations