Solar Physics

, 293:78 | Cite as

Single ICMEs and Complex Transient Structures in the Solar Wind in 2010 – 2011

  • D. RodkinEmail author
  • V. Slemzin
  • A. N. Zhukov
  • F. Goryaev
  • Y. Shugay
  • I. Veselovsky


We analyze the statistics, solar sources, and properties of interplanetary coronal mass ejections (ICMEs) in the solar wind. The total number of coronal mass ejections (CMEs) registered in the Coordinated Data Analysis Workshops catalog (CDAW) during the first eight years of Cycle 24 was 61% larger than in the same period of Cycle 23, but the number of X-ray flares registered by the Geostationary Operational Environmental Satellite (GOES) was 20 % smaller because the solar activity was lower. The total number of ICMEs in the given period of Cycle 24 in the Richardson and Cane list was 29% smaller than in Cycle 23, which may be explained by a noticeable number of non-classified ICME-like events in the beginning of Cycle 24. For the period January 2010 – August 2011, we identify solar sources of the ICMEs that are included in the Richardson and Cane list. The solar sources of ICME were determined from coronagraph observations of the Earth-directed CMEs, supplemented by modeling of their propagation in the heliosphere using kinematic models (a ballistic and drag-based model). A detailed analysis of the ICME solar sources in the period under study showed that in 11 cases out of 23 (48%), the observed ICME could be associated with two or more sources. For multiple-source events, the resulting solar wind disturbances can be described as complex (merged) structures that are caused by stream interactions, with properties depending on the type of the participating streams. As a reliable marker to identify interacting streams and their sources, we used the plasma ion composition because it freezes in the low corona and remains unchanged in the heliosphere. According to the ion composition signatures, we classify these cases into three types: complex ejecta originating from weak and strong CME–CME interactions, as well as merged interaction regions (MIRs) originating from the CME high-speed stream (HSS) interactions. We describe temporal profiles of the ion composition for the single-source and multi-source solar wind structures and compared them with the ICME signatures determined from the kinematic and magnetic field parameters of the solar wind. In single-source events, the ion charge state, as a rule, has a one-peak enhancement with an average duration of \(\text{about one}\) day, which is similar to the mean ICME duration of 1.12 days derived from the Richardson and Cane list. In the multi-source events, the total profile of the ion charge state consists of a sequence of enhancements that is associated with the interaction between the participating streams. On average, the total duration of the complex structures that appear as a result of the CME–CME and CME–HSS interactions as determined from their ion composition is 2.4 days, which is more than twice longer than that of the single-source events.


Solar wind Interplanetary coronal mass ejections Solar corona Coronal mass ejections 



The authors are grateful to Ian Richardson and Hilary Cane for their list of Near-Earth Interplanetary Coronal Mass Ejections,10 which we used in our investigations. This paper also uses data from the CACTus CME catalog,11 generated and maintained by the SIDC at the Royal Observatory of Belgium, and the SEEDS CME catalog.12 The SEEDS project has been supported by NASA Living With a Star Program and NASA Applied Information Systems Research Program. We have used the CME catalog that is generated and maintained at the CDAW Data Center13 by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. The authors thank the STEREO, GOES, SDO/AIA, and ACE research teams for their open data policy. We are grateful for the opportunity to use the results of the simulation obtained by the WSA-Enlil Cone and DBM models.14 This work was supported by the Russian Scientific Foundation project 17-12-01567. A.N. Zhukov acknowledges support from the Belgian Federal Science Policy Office through the ESA-PRODEX programme.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Andrews, M.-D.: 2003, A search for CMEs associated with big flares. Solar Phys. 218, 261. DOI. ADSCrossRefGoogle Scholar
  2. Behannon, K.W., Burlaga, L.F., Hewish, A.: 1991, Structure and evolution of compound streams at not greater than 1 AU. J. Geophys. Res. 96, 21. DOI. CrossRefGoogle Scholar
  3. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADSCrossRefGoogle Scholar
  4. Burlaga, L.F., Behannon, K.W., Klein, L.W.: 1987, Compound streams, magnetic clouds, and major geomagnetic storms. J. Geophys. Res. 92, 5725. DOI. ADSCrossRefGoogle Scholar
  5. Burlaga, L.F., Plunkett, S.P., St. Cyr, O.C.: 2002, Successive CMEs and complex ejecta. J. Geophys. Res. 107, 1266. DOI. CrossRefGoogle Scholar
  6. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. DOI. ADSCrossRefGoogle Scholar
  7. Burlaga, L., Berdichevsky, D., Gopalswamy, N., Lepping, R., Zurbuchen, T.: 2003, Merged interaction regions at 1 AU. J. Geophys. Res. 108, 1425. DOI. CrossRefGoogle Scholar
  8. Compagnino, A., Romano, P., Zuccarello, F.: 2017, A statistical study of CME properties and of the correlation between flares and CMEs over the Solar Cycles 23 and 24. Solar Phys. 292, 5. DOI. ADSCrossRefGoogle Scholar
  9. Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291. DOI. ADSCrossRefGoogle Scholar
  10. Echer, E., Alves, M.V., Gonzalez, W.D.: 2005, A statistical study of magnetic cloud parameters and geoeffectiveness. J. Atmos. Solar-Terr. Phys. 67, 839. DOI. ADSCrossRefGoogle Scholar
  11. Emslie, A.G., Dennis, B.R., Shih, A.Y., Chamberlin, P.C., Mewaldt, R.A., Moore, C.S., Share, G.H., Vourlidas, A., Welsch, B.T.: 2012, Global energetics of thirty-eight large solar eruptive events. Astrophys. J. 759, 71. DOI. ADSCrossRefGoogle Scholar
  12. Farrugia, C.J., Burlaga, L.F., Lepping, R.P.: 1997, Magnetic clouds and the quiet-storm effect at Earth. In: Tzurutani, B.T., Gonzalez, W.D., Kamide, Y., Arballo, J.K. (eds.) Magnetic Storms, Geophys. Mon. Ser. 98, Am. Geophys. Union, Washington, 91. CrossRefGoogle Scholar
  13. Feldman, U.: 1992, Elemental abundances in the upper solar atmosphere. Phys. Scr. T 46, 202. ADSCrossRefGoogle Scholar
  14. Feldman, U., Landi, E., Schwadron, N.-A.: 2005, On the sources of fast and slow solar wind. J. Geophys. Res. 110, A07109. DOI. ADSGoogle Scholar
  15. Galvin, A.B.: 2013, Solar wind ion observations: comparison from the depths of solar minimum to the rising of the cycle. AIP Conf. Proc. 1539, 15. DOI. ADSCrossRefGoogle Scholar
  16. Gloeckler, G., Cain, J., Ipavich, F.M., Tums, E.O., Bedini, P., Fisk, L.A., Zurbuchen, T.H., Bochsler, P., Fischer, J., Wimmer-Schweingruber, R.F., Geiss, J., Kallenbach, R.: 1998, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev. 86, 497. DOI. ADSCrossRefGoogle Scholar
  17. Gopalswamy, N., Mäkelä, P., Akiyama, S., Xie, H., Yashiro, S., Reinard, A.A.: 2013, The solar connection of enhanced heavy ion charge states in the interplanetary medium: implications for the flux-rope structure of CMEs. Solar Phys. 284, 17. DOI. ADSCrossRefGoogle Scholar
  18. Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Mäkelä, P.: 2015, Properties and geoeffectiveness of magnetic clouds during Solar Cycles 23 and 24. J. Geophys. Res. 120, 9221. DOI. CrossRefGoogle Scholar
  19. Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J.L.: 1990, Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett. 17, 901. DOI. ADSCrossRefGoogle Scholar
  20. Gosling, J.-T., McComas, D.-J., Phillips, J.-L., Bame, S.-J.: 1991, Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. 96, 7831. DOI. ADSCrossRefGoogle Scholar
  21. Harrison, R.A., Davies, J.A., Möstl, C., Liu, Y., Temmer, M., Bisi, M.M., Eastwood, J.P., de Koning, C.A., Nitta, N., Rollett, T., Farrugia, C.J., Forsyth, R.J., Jackson, B.V., Jensen, E.A., Kilpua, E.K.J., Odstrcil, D., Webb, D.F.: 2012, An analysis of the origin and propagation of the multiple coronal mass ejections of 2010 August 1. Astrophys. J. 750, 45. DOI. ADSCrossRefGoogle Scholar
  22. Heidrich-Meisner, V., Peleikis, T., Kruse, M., Berger, L., Wimmer-Schweingruber, R.: 2016, Observations of high and low Fe charge states in individual solar wind streams with coronal-hole origin. Astron. Astrophys. 593, A70. DOI. ADSCrossRefGoogle Scholar
  23. Hess, P., Zhang, J.: 2017, A study of the Earth-affecting CMEs of Solar Cycle 24. Solar Phys. 292, 80. DOI. ADSCrossRefGoogle Scholar
  24. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADSCrossRefGoogle Scholar
  25. Hudson, H.S., Cliver, E.W.: 2001, Observing coronal mass ejections without coronagraphs. J. Geophys. Res. 106, 25199. DOI. ADSCrossRefGoogle Scholar
  26. Hundhausen, A.-J., Gilbert, H.-E., Bame, S.-J.: 1968, Ionization state of the interplanetary plasma. J. Geophys. Res. 73, 5485. DOI. ADSCrossRefGoogle Scholar
  27. Kataoka, R., Shiota, D., Kilpua, E., Keika, K.: 2015, Pileup accident hypothesis of magnetic storm on 17 March 2015. Geophys. Res. Lett. 42, 5155. DOI. ADSCrossRefGoogle Scholar
  28. Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G., Russell, C.T.: 2012, Observations of ICMEs and ICME-like solar wind structures from 2007 – 2010 using near-Earth and STEREO observations. Solar Phys. 281, 391. DOI. ADSGoogle Scholar
  29. Kilpua, E.K.J., Mierla, M., Zhukov, A.N., Rodriguez, L., Vourlidas, A., Wood, B.: 2014, Solar sources of interplanetary coronal mass ejections during the Solar Cycle 23/24 minimum. Solar Phys. 289, 3773. DOI. ADSCrossRefGoogle Scholar
  30. Kocher, M., Lepri, S.T., Landi, E., Zhao, L., Manchester, W.B. IV: 2017, Anatomy of depleted interplanetary coronal mass ejections. Astrophys. J. 834, 147. DOI. ADSCrossRefGoogle Scholar
  31. Laming, J.M.: 2015, The FIP and inverse FIP effects in solar and stellar coronae. Living Rev. Solar Phys. 12, 2. DOI. ADSCrossRefGoogle Scholar
  32. Lawrance, M.B., Shanmugaraju, A., Moon, Y.-J., Ibrahim, M.S., Umapathy, S.: 2016, Relationships between interplanetary coronal mass ejection characteristics and geoeffectiveness in the rising phase of Solar Cycles 23 and 24. Solar Phys. 291, 1547. DOI. ADSCrossRefGoogle Scholar
  33. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADSCrossRefGoogle Scholar
  34. Lepri, S.T., Zurbuchen, T.H., Fisk, L.A., Richardson, I.G., Cane, H.V., Gloeckler, G.: 2001, Iron charge distribution as an identifier of interplanetary coronal mass ejections. J. Geophys. Res. 106, 29231. DOI. ADSCrossRefGoogle Scholar
  35. Liu, Y.D., Yang, Z., Wang, R., Luhmann, J.G., Richardson, J.D., Lugaz, N.: 2014a, Sun-to-Earth characteristics of two coronal mass ejections interacting near 1 AU: formation of a complex ejecta and generation of a two-step geomagnetic storm. Astrophys. J. Lett. 793, L41. DOI. ADSCrossRefGoogle Scholar
  36. Liu, Y.D., Yang, Z., Wang, R., Luhmann, J.G., Richardson, J.D., Lugaz, N.: 2014b, Sun-to-Earth characteristics of two coronal mass ejections interacting near 1 AU: formation of a complex ejecta and generation of a two-step geomagnetic storm. Astrophys. J. Lett. 793, L41. DOI. ADSCrossRefGoogle Scholar
  37. Liu, Y.D., Hu, H., Wang, R., Yang, Z., Zhu, B., Liu, Y.A., Luhmann, J.G., Richardson, J.D.: 2015, Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic storm intensity and variability. Astrophys. J. Lett. 809, L34. DOI. ADSCrossRefGoogle Scholar
  38. Liu, Y., Luhmann, J.G., Bale, S.D., Lin, R.P.: 2011, Solar source and heliospheric consequences of the 2010 April 3 coronal mass ejection: a comprehensive view. Astrophys. J. 734, 84. DOI. ADSCrossRefGoogle Scholar
  39. Lugaz, N., Farrugia, C.J., Davies, J.A., Möstl, C., Davis, C.J., Roussev, I.I., Temmer, M.: 2012, The deflection of the two interacting coronal mass ejections of 2010 May 23 – 24 as revealed by combined in situ measurements and heliospheric imaging. Astrophys. J. 759, 68. DOI. ADSCrossRefGoogle Scholar
  40. Lugaz, N., Temmer, M., Wang, Y., Farrugia, C.J.: 2017, The interaction of successive coronal mass ejections: a review. Solar Phys. 292, 64. DOI. ADSCrossRefGoogle Scholar
  41. McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev. 86, 563. DOI. ADSCrossRefGoogle Scholar
  42. Moon, Y.-J., Choe, G.S., Wang, H., Park, Y.D.: 2003, Sympathetic coronal mass ejections. Astrophys. J. 588, 1176. DOI. ADSCrossRefGoogle Scholar
  43. Möstl, C., Temmer, M., Rollett, T., Farrugia, C.J., Liu, Y., Veronig, A.M., Leitner, M., Galvin, A.B., Biernat, H.K.: 2010, STEREO and wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5 – 7 April 2010. Geophys. Res. Lett. 37, L24103. DOI. ADSCrossRefGoogle Scholar
  44. Möstl, C., Farrugia, C.J., Kilpua, E.K.J., Jian, L.K., Liu, Y., Eastwood, J.P., Harrison, R.A., Webb, D.F., Temmer, M., Odstrcil, D., Davies, J.A., Rollett, T., Luhmann, J.G., Nitta, N., Mulligan, T., Jensen, E.A., Forsyth, R., Lavraud, B., de Koning, C.A., Veronig, A.M., Galvin, A.B., Zhang, T.L., Anderson, B.J.: 2012, Multi-point shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere. Astrophys. J. 758, 10. DOI. ADSCrossRefGoogle Scholar
  45. Mrozek, T., Gburek, S., Siarkowski, M., Sylwester, B., Sylwester, J., Kȩpa, A., Gryciuk, M.: 2013, Solar flares observed simultaneously with SphinX, GOES and RHESSI. In: Kosovichev, A.G., de Gouveia Dal Pino, E., Yan, Y. (eds.) Solar and Astrophysical Dynamos and Magnetic Activity, IAU Symposium 294, 571. DOI. Google Scholar
  46. Nolte, J.T., Roelof, E.C.: 1973, Large-scale structure of the interplanetary medium, I: high coronal source longitude of the quiet-time solar wind. Solar Phys. 33, 241. DOI. ADSCrossRefGoogle Scholar
  47. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev. 71, 55. DOI. ADSCrossRefGoogle Scholar
  48. Richardson, I.G., Cane, H.V.: 2004, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res. 109, A09104. DOI. ADSCrossRefGoogle Scholar
  49. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189. DOI. ADSCrossRefGoogle Scholar
  50. Robbrecht, E., Patsourakos, S., Vourlidas, A.: 2009, No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283. DOI. ADSCrossRefGoogle Scholar
  51. Rodkin, D.G., Shugay, Y.S., Slemzin, V.A., Veselovskii, I.S.: 2016, Interaction of high-speed and transient fluxes of solar wind at the maximum of Solar Cycle 24. Bull. Lebedev Phys. Inst. 43, 287. DOI. ADSCrossRefGoogle Scholar
  52. Rod’kin, D.G., Shugay, Y.S., Slemzin, V.A., Veselovskii, I.S.: 2016, The effect of solar activity on the evolution of solar wind parameters during the rise of the 24th cycle. Solar Syst. Res. 50, 44. DOI. ADSCrossRefGoogle Scholar
  53. Rodkin, D., Goryaev, F., Pagano, P., Gibb, G., Slemzin, V., Shugay, Y., Veselovsky, I., Mackay, D.H.: 2017, Origin and ion charge state evolution of solar wind transients during 4 – 7 August 2011. Solar Phys. 292, 90. DOI. ADSCrossRefGoogle Scholar
  54. Rouillard, A.P., Lavraud, B., Sheeley, N.R., Davies, J.A., Burlaga, L.F., Savani, N.P., Jacquey, C., Forsyth, R.J.: 2010, White light and in situ comparison of a forming merged interaction region. Astrophys. J. 719, 1385. DOI. ADSCrossRefGoogle Scholar
  55. Schwenn, R., Raymond, J.C., Alexander, D., Ciaravella, A., Gopalswamy, N., Howard, R., Hudson, H., Kaufmann, P., Klassen, A., Maia, D., Munoz-Martinez, G., Pick, M., Reiner, M., Srivastava, N., Tripathi, D., Vourlidas, A., Wang, Y.-M., Zhang, J.: 2006, Coronal observations of CMEs. Report of working group A. Space Sci. Rev. 123, 127. DOI. ADSCrossRefGoogle Scholar
  56. Shen, F., Wang, Y., Shen, C., Feng, X.: 2017, On the collision nature of two coronal mass ejections: a review. Solar Phys. 292, 104. DOI. ADSCrossRefGoogle Scholar
  57. Shi, T., Wang, Y., Wan, L., Cheng, X., Ding, M., Zhang, J.: 2015, Predicting the arrival time of coronal mass ejections with the graduated cylindrical shell and drag force model. Astrophys. J. 806, 271. DOI. ADSCrossRefGoogle Scholar
  58. Shugay, Y.S., Veselovsky, I.S., Seaton, D.B., Berghmans, D.: 2011, Hierarchical approach to forecasting recurrent solar wind streams. Solar Syst. Res. 45, 546. DOI. ADSCrossRefGoogle Scholar
  59. Shugay, Y.S., Veselovsky, I.S., Slemzin, V.A., Yermolaev, Y.I., Rodkin, D.G.: 2017, Possible causes of the discrepancy between the predicted and observed parameters of high-speed solar wind streams. Cosm. Res. 55, 20. DOI. ADSCrossRefGoogle Scholar
  60. Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev. 86, 613. DOI. ADSCrossRefGoogle Scholar
  61. Somov, B.V. (ed.): 2013, Plasma Astrophysics, Part II, Astrophysics and Space Science Library 392. DOI. zbMATHGoogle Scholar
  62. Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The advanced composition explorer. Space Sci. Rev. 86, 1. DOI. ADSCrossRefGoogle Scholar
  63. Temmer, M., Rollett, T., Möstl, C., Veronig, A.M., Vršnak, B., Odstrčil, D.: 2011, Influence of the ambient solar wind flow on the propagation behavior of interplanetary coronal mass ejections. Astrophys. J. 743, 101. DOI. ADSCrossRefGoogle Scholar
  64. Temmer, M., Vršnak, B., Rollett, T., Bein, B., de Koning, C.A., Liu, Y., Bosman, E., Davies, J.A., Möstl, C., Žic, T., Veronig, A.M., Bothmer, V., Harrison, R., Nitta, N., Bisi, M., Flor, O., Eastwood, J., Odstrcil, D., Forsyth, R.: 2012, Characteristics of kinematics of a coronal mass ejection during the 2010 August 1 CME–CME interaction event. Astrophys. J. 749, 57. DOI. ADSCrossRefGoogle Scholar
  65. Temmer, M., Reiss, M.A., Nikolic, L., Hofmeister, S.J., Veronig, A.M.: 2017, Preconditioning of interplanetary space due to transient CME disturbances. Astrophys. J. 835, 141. DOI. ADSCrossRefGoogle Scholar
  66. Žic, T., Vršnak, B., Temmer, M.: 2015, Heliospheric propagation of coronal mass ejections: drag-based model fitting. Astrophys. J. Suppl. 218, 32. DOI. ADSCrossRefGoogle Scholar
  67. Verbanac, G., Živković, S., Vršnak, B., Bandić, M., Hojsak, T.: 2013, Comparison of geoeffectiveness of coronal mass ejections and corotating interaction regions. Astron. Astrophys. 558, A85. DOI. ADSCrossRefGoogle Scholar
  68. von Steiger, R., Christon, S.P., Gloeckler, G., Ipavich, F.M.: 1992, Variable carbon and oxygen abundances in the solar wind as observed in Earth’s magnetosheath by AMPTE/CCE. Astrophys. J. 389, 791. DOI. ADSCrossRefGoogle Scholar
  69. Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: observations. Living Rev. Solar Phys. 9. DOI.
  70. Wu, C.-C., Liou, K., Lepping, R.P., Hutting, L., Plunkett, S., Howard, R.A., Socker, D.: 2016, The first super geomagnetic storm of Solar Cycle 24: “The St. Patrick’s day event (17 March 2015)”. Earth Planets Space 68, 151. DOI. ADSCrossRefGoogle Scholar
  71. Yashiro, S., Gopalswamy, N.: 2009, Statistical relationship between solar flares and coronal mass ejections. In: Gopalswamy, N., Webb, D.-F. (eds.) Universal Heliophysical Processes, IAU Symposium 257, 233. DOI. Google Scholar
  72. Yermolaev, Y.I., Yermolaev, M.Y., Lodkina, I.G., Nikolaeva, N.S.: 2007, Statistical investigation of heliospheric conditions resulting in magnetic storms. Cosm. Res. 45, 1. DOI. ADSCrossRefGoogle Scholar
  73. Yermolaev, Y.-I., Nikolaeva, N.-S., Lodkina, I.-G., Yermolaev, M.-Y.: 2012, Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J. Geophys. Res. 117, A00L07. DOI. ADSGoogle Scholar
  74. Zhang, G., Burlaga, L.F.: 1988, Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases. J. Geophys. Res. 93, 2511. DOI. ADSCrossRefGoogle Scholar
  75. Zhang, J., Wang, J.: 2002, Are homologous flare-coronal mass ejection events triggered by moving magnetic features? Astrophys. J. Lett. 566, L117. DOI. ADSCrossRefGoogle Scholar
  76. Zhang, J., Liemohn, M.W., Kozyra, J.U., Lynch, B.J., Zurbuchen, T.H.: 2004, A statistical study of the geoeffectiveness of magnetic clouds during high solar activity years. J. Geophys. Res. 109, A09101. DOI. ADSCrossRefGoogle Scholar
  77. Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mathrm{Dst}< = -100~\mbox{nT}\)) during 1996 – 2005. J. Geophys. Res. 112, A10102. DOI. ADSCrossRefGoogle Scholar
  78. Zhao, L., Landi, E., Kocher, M., Lepri, S.T., Fisk, L.A.: 2016, Anomalously low C6+/C5+ ratio in solar wind: ACE/SWICS observation. In: AIP Publishing LLC, AIP Conference Proceedings 1720, 020006. DOI. Google Scholar
  79. Zhukov, A.N.: 2007, Using CME observations for geomagnetic storm forecasting. In: Lilensten, J. (ed.) Space Weather : Research Towards Applications in Europe 2nd European Space Weather Week (ESWW2), Astrophysics and Space Science Library 344, 5. DOI. CrossRefGoogle Scholar
  80. Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.P.N. Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia
  2. 2.Solar-Terrestrial Centre of Excellence – SIDCRoyal Observatory of BelgiumBrusselsBelgium
  3. 3.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  4. 4.Space Research Institute (IKI RAS)MoscowRussia

Personalised recommendations