Solar Physics

, 293:63 | Cite as

Temporal and Periodic Variations of Sunspot Counts in Flaring and Non-Flaring Active Regions

  • A. Kilcik
  • V. Yurchyshyn
  • B. Donmez
  • V. N. Obridko
  • A. Ozguc
  • J. P. Rozelot


We analyzed temporal and periodic variations of sunspot counts (SSCs) in flaring (C-, M-, or X-class flares), and non-flaring active regions (ARs) for nearly three solar cycles (1986 through 2016). Our main findings are as follows: i) temporal variations of monthly means of the daily total SSCs in flaring and non-flaring ARs behave differently during a solar cycle and the behavior varies from one cycle to another; during Solar Cycle 23 temporal SSC profiles of non-flaring ARs are wider than those of flaring ARs, while they are almost the same during Solar Cycle 22 and the current Cycle 24. The SSC profiles show a multi-peak structure and the second peak of flaring ARs dominates the current Cycle 24, while the difference between peaks is less pronounced during Solar Cycles 22 and 23. The first and second SSC peaks of non-flaring ARs have comparable magnitude in the current solar cycle, while the first peak is nearly absent in the case of the flaring ARs of the same cycle. ii) Periodic variations observed in the SSCs profiles of flaring and non-flaring ARs derived from the multi-taper method (MTM) spectrum and wavelet scalograms are quite different as well, and they vary from one solar cycle to another. The largest detected period in flaring ARs is \(113\pm 1.6~\mbox{days}\) while we detected much longer periodicities (\(327\pm 13\), \(312 \pm 11\), and \(256\pm 8~\mbox{days}\)) in the non-flaring AR profiles. No meaningful periodicities were detected in the MTM spectrum of flaring ARs exceeding \(55\pm 0.7~\mbox{days}\) during Solar Cycles 22 and 24, while a \(113\pm 1.3~\mbox{days}\) period was detected in flaring ARs of Solar Cycle 23. For the non-flaring ARs the largest detected period was only \(31\pm 0.2~\mbox{days}\) for Cycle 22 and \(72\pm 1.3~\mbox{days}\) for the current Cycle 24, while the largest measured period was \(327\pm 13~\mbox{days}\) during Solar Cycle 23.


Sun: active regions Sunspots Flares Periodicity 



All flaring and non-flaring AR data used in this study were taken from the Space Weather Prediction Center (SWPC). The wavelet analysis software package was created by C. Torrence and G. Compo, and it is available at . The MTM analysis software is available from . This study was supported by the Scientific and Technical Council of Turkey by the Project of 115F031. V. Yurchyshyn acknowledges support from AFOSR FA9550-15-1-0322 and NSF AST-1614457 grants and KASI. J.P. Rozelot acknowledges a visitor scientist grant from the International Space Science Institute in Bern (Switzerland).

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflict of interest.


  1. Babcock, H.W.: 1961, The topology of the sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572. DOI. ADSCrossRefGoogle Scholar
  2. Bai, T.: 1992, The 77 day periodicity in the flare rate of cycle 22. Astrophys. J. Lett. 388, L69. DOI. ADSCrossRefGoogle Scholar
  3. Bai, T.: 2003, Periodicities in solar flare occurrence: analysis of cycles 19 – 23. Astrophys. J. 591, 406. DOI. ADSCrossRefGoogle Scholar
  4. Bai, T., Sturrock, P.: 1987, The 152-day periodicity of the solar flare occurrence rate. Nature 327, 601. DOI. ADSCrossRefGoogle Scholar
  5. Bai, T., Sturrock, P.: 1991, The 154-day and related periodicities of solar activity as subharmonics of a fundamental period. Nature 350, 141. DOI. ADSCrossRefGoogle Scholar
  6. Ballester, J.L., Oliver, R., Baudin, F.: 1999, Discovery of the near 158 day periodicity in group sunspot numbers during the eighteenth century. Astrophys. J. Lett. 522, L153. DOI. ADSCrossRefGoogle Scholar
  7. Ballester, J.L., Oliver, R., Carbonell, M.: 2002, The near 160 day periodicity in the photospheric magnetic flux. Astrophys. J. 566, 505. DOI. ADSCrossRefGoogle Scholar
  8. Bludova, N.G., Obridko, V.N., Badalyan, N.: 2014, The relative umbral area in spot groups as an index of cyclic variation of solar activity. Solar Phys. 289, 1013. DOI. ADSCrossRefGoogle Scholar
  9. Bouwer, S.D.: 1992, Periodicities of solar irradiance and solar activity indices. II. Solar Phys. 142, 365. DOI. ADSCrossRefGoogle Scholar
  10. Brandenburg, A., Rogachevskii, I., Kleeorin, N.: 2016, Magnetic concentrations in stratified turbulence: the negative effective magnetic pressure instability. New J. Phys. 18, 125011. DOI. ADSCrossRefGoogle Scholar
  11. Cheung, M.C.M., Isobe, H.: 2014, Flux emergence (theory). Living Rev. Solar Phys. 11, 3. DOI. ADSCrossRefGoogle Scholar
  12. Cheung, M.C.M., Schussler, M., Tarbell, T.D., Title, A.M.: 2008, Solar surface emerging flux regions: a comparative study of radiative MHD modeling and Hinode SOT observations. Astrophys. J. 687, 1373. DOI. ADSCrossRefGoogle Scholar
  13. Choudhary, D.P., Lawrence, J.K., Norris, M., Cadavid, A.C.: 2014, Different periodicities in the sunspot area and the occurrence of solar flares and coronal mass ejections in Solar Cycle 23 – 24. Solar Phys. 289, 649. DOI. ADSCrossRefGoogle Scholar
  14. Chowdhury, P., Dwivedi, B.N.: 2011, Periodicities of sunspot number and coronal index time series during Solar Cycle 23. Solar Phys. 270, 365. DOI. ADSCrossRefGoogle Scholar
  15. Chowdhury, P., Jain, R., Awasthi, A.K.: 2013, Periodicities in the X-ray emission from the solar corona. Astrophys. J. 778, 9. DOI. CrossRefGoogle Scholar
  16. Chowdhury, P., Khan, M., Ray, P.C.: 2009, Intermediate-term periodicities in sunspot areas during solar cycles 22 and 23. Mon. Not. Roy. Astron. Soc. 392, 1159. DOI. ADSCrossRefGoogle Scholar
  17. Chowdhury, P., Choudhary, D.P., Gosain, S., Moon, Y.J.: 2015, Short-term periodicities in interplanetary, geomagnetic and solar phenomena during Solar Cycle 24. Astrophys. Space Sci. 356, 7. DOI. ADSCrossRefGoogle Scholar
  18. Deng, L.H., Qu, Z.Q., Yan, X.L., Wang, K.R.: 2013, Phase analysis of sunspot group numbers on both solar hemispheres. Res. Astron. Astrophys. 13, 104. DOI. ADSCrossRefGoogle Scholar
  19. Dennis, B.R.: 1985, Solar hard X-ray bursts. Solar Phys. 100, 465. DOI. ADSCrossRefGoogle Scholar
  20. Dimitropoulou, M., Moussas, X., Strintzi, D.: 2008, Enhanced Rieger-type periodicities detection in X-ray solar flares and statistical validation of Rossby waves existence. Mon. Not. Roy. Astron. Soc. 386, 2278. DOI. ADSCrossRefGoogle Scholar
  21. Droege, W., Gibbs, K., Grunsfeld, J.M., Meyer, P., Newport, B.J., Evenson, P., Moses, D.: 1990, A 153 day periodicity in the occurrence of solar flares producing energetic interplanetary electrons. Astrophys. J. Suppl. 73, 279. DOI. ADSCrossRefGoogle Scholar
  22. Du, Z.L.: 2015, Bimodal structure of the solar cycle. Astrophys. J. 803, 15. DOI. CrossRefGoogle Scholar
  23. Gao, P.X., Shi, X.J., Li, Y.: 2012, Cyclical behavior of solar filaments. Astron. Nachr. 333(7), 576. DOI. ADSCrossRefGoogle Scholar
  24. Gao, P.X., Zhong, J.: 2016, The curious temporal behavior of the frequency of different class flares. New Astron. 43, 91. DOI. ADSCrossRefGoogle Scholar
  25. Georgieva, K.: 2011, Why the sunspot cycle is double peaked. ISRN Astron. Astrophys. 2011, 437878. DOI. CrossRefGoogle Scholar
  26. Getling, A.V., Ishikawa, R., Buchnev, A.A.: 2015, Doubts about the crucial role of the rising-tube mechanism in the formation of sunspot groups. Adv. Space Res. 55(3), 862. DOI. ADSCrossRefGoogle Scholar
  27. Getling, A.V., Ishikawa, R., Buchnev, A.A.: 2016, Development of active regions: flows, magnetic-field patterns and bordering effect. Solar Phys. 291, 371. DOI. ADSCrossRefGoogle Scholar
  28. Ghil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A.W., Saunders, A., Tian, Y., Varadi, F., Yiou, P.: 2002, Advanced spectral methods for climatic time series. Rev. Geophys. 40, 3.1. DOI. CrossRefGoogle Scholar
  29. Gomez, A., Curto, J.J., Gras, C.: 2014, Evolution of sunspot characteristics in Cycle 23. Solar Phys. 289, 91. DOI. ADSCrossRefGoogle Scholar
  30. Hathaway, D.H.: 2009, Solar cycle forecasting. Space Sci. Rev. 144, 401. DOI. ADSCrossRefGoogle Scholar
  31. Ichimoto, K., Kubota, J., Suzuki, M., Tohmura, I., Kurokawa, H.: 1985, Periodic behaviour of solar flare activity. Nature 316, 422. DOI. ADSCrossRefGoogle Scholar
  32. Javaraiah, J.: 2013, Long-term temporal variations in the areas of sunspot groups. Adv. Space Res. 52, 963. DOI. ADSCrossRefGoogle Scholar
  33. Jenkins, G.M., Watts, D.G.: 1969, Spectral Analysis and Its Applications, Holden-Day, London. zbMATHGoogle Scholar
  34. Kilcik, A., Ozguc, A., Rozelot, J.P., Atac, T.: 2010, Periodicities in solar flare index for Cycles 21 – 23 revisited. Solar Phys. 264, 255. DOI. ADSCrossRefGoogle Scholar
  35. Kilcik, A., Yurchyshyn, V.B., Abramenko, V., Goode, P.R., Ozguc, A., Rozelot, J.P., Cao, W.: 2011, Time distributions of large and small sunspot groups over four solar cycles. Astrophys. J. 731, 30. DOI. ADSCrossRefGoogle Scholar
  36. Kilcik, A., Yurchyshyn, V.B., Ozguc, A., Rozelot, J.P.: 2014a, Solar Cycle 24: curious changes in the relative numbers of sunspot group types. Astrophys. J. Lett. 794, L2. DOI. ADSCrossRefGoogle Scholar
  37. Kilcik, A., Yurchyshyn, V.B., Ozguc, A., Rozelot, J.P.: 2014b, Sunspot count periodicities in different Zurich sunspot group classes since 1986. Solar Phys. 289, 4365. DOI. ADSCrossRefGoogle Scholar
  38. Kilcik, A., Yurchyshyn, V., Clette, F., Ozguc, A., Rozelot, J.P.: 2016, Active latitude oscillations observed on the Sun. Solar Phys. 291, 1077. DOI. ADSCrossRefGoogle Scholar
  39. Kile, J.N., Cliver, E.V.: 1991, A search for the 154 day periodicity in the occurrence rate of solar flares using Ottawa 2.8 GHz burst data, 1955 – 1990. Astrophys. J. 370, 442. DOI. ADSCrossRefGoogle Scholar
  40. Krause, F., Radler, K.H.: 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory, Akademie-Verlag, Berlin. zbMATHGoogle Scholar
  41. Lara, A., Borgazzi, A., Mendes, O., Rosa, R.R., Domingues, M.O.: 2008, Short-period fluctuations in coronal mass ejection activity during Solar Cycle 23. Solar Phys. 248, 155. DOI. ADSCrossRefGoogle Scholar
  42. Lean, J.L., Brueckner, G.E.: 1989, Intermediate-term solar periodicities – 100 – 500 days. Astrophys. J. 337, 568. DOI. ADSCrossRefGoogle Scholar
  43. Lefevre, L., Clette, F.: 2011, A global small sunspot deficit at the base of the index anomalies of solar cycle 23. Astron. Astrophys. 536, L11. DOI. ADSCrossRefGoogle Scholar
  44. Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1. DOI. ADSCrossRefGoogle Scholar
  45. Lou, Y.Q., Wang, Y.M., Fan, Z., Wang, J.X., Wang, S.: 2003, Periodicities in solar coronal mass ejections. Mon. Not. Roy. Astron. Soc. 345, 809. DOI. ADSCrossRefGoogle Scholar
  46. McIntosh, P.S.: 1990, The classification of sunspot groups. Solar Phys. 125, 251. DOI. ADSCrossRefGoogle Scholar
  47. Morlet, J., Arens, G., Forgeau, I., Giard, D.: 1982, Wave propagation and sampling theory. Geophysics 47, 203. DOI. ADSCrossRefGoogle Scholar
  48. Mufti, S., Shah, G.N.: 2011, Solar-geomagnetic activity influence on Earth’s climate. J. Atmos. Solar-Terr. Phys. 73, 1607. DOI. ADSCrossRefGoogle Scholar
  49. Nagovitsyn, Y.A., Pevtsov, A.A., Livingston, W.C.: 2012, On a possible explanation of the long-term decrease in sunspot field strength. Astrophys. J. Lett. 758, L20. DOI. ADSCrossRefGoogle Scholar
  50. Nagovitsyn, Y.A., Pevtsov, A.A., Osipova, A.A., Tlatov, A.G., Miletskii, E.V., Nagovisyna, E.Y.: 2016, Two populations of sunspots and secular variations of their characteristics. Astron. Lett. 42, 703. DOI. ADSCrossRefGoogle Scholar
  51. Obridko, V.N., Badalyan, N.: 2014, Cyclic and secular variations sunspot groups with various scale. Astron. Rep. 58, 936. DOI. ADSCrossRefGoogle Scholar
  52. Obridko, V.N., Nagovitsyn, Y.A., Georgieva, K.: 2012, The unusual sunspot minimum: challenge to the solar dynamo theory. In: The Sun: New Challenges, Astron. Space Sci. Proc. 30, Springer, Berlin, 1. DOI. CrossRefGoogle Scholar
  53. Obridko, V.N., Shelting, B.D.: 2008, On prediction of the strength of the 11-year Solar Cycle No. 24. Solar Phys. 248, 191. DOI. ADSCrossRefGoogle Scholar
  54. Oliver, R., Carbonell, M., Ballester, J.L.: 1992, Intermediate-term periodicities in solar activity. Solar Phys. 137, 141. DOI. ADSCrossRefGoogle Scholar
  55. Ozguc, A., Atac, T.: 1989, Periodic behavior of solar flare index during solar cycles 20 and 21. Solar Phys. 123, 357. DOI. ADSCrossRefGoogle Scholar
  56. Ozguc, A., Atac, T.: 1994, The 73-day periodicity of the flare index during the current solar cycle 22. Solar Phys. 150, 339. DOI. ADSCrossRefGoogle Scholar
  57. Ozguc, A., Atac, T., Rybak, J.: 2002, Flare index variability in the ascending branch of solar cycle 23. J. Geophys. Res. 107, SSH 11. DOI. CrossRefGoogle Scholar
  58. Ozguc, A., Atac, T., Rybak, J.: 2003, Temporal variability of the flare index (1966 – 2001). Solar Phys. 214, 375. DOI. ADSCrossRefGoogle Scholar
  59. Parker, E.N.: 1955, Hydromagnetic dynamo models. Astrophys. J. 122, 293. DOI. ADSMathSciNetCrossRefGoogle Scholar
  60. Petrovay, K.: 2010, Solar cycle prediction. Living Rev. Solar Phys. 7, 6. DOI. ADSCrossRefGoogle Scholar
  61. Pipin, V.V.: 2015, Dependence of magnetic cycle parameters on period of rotation in non-linear solar-type dynamos. Mon. Not. Roy. Astron. Soc. 451, 1528. DOI. ADSCrossRefGoogle Scholar
  62. Pipin, V.V., Kosovichev, A.G.: 2014, Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo model. Astrophys. J. 785, 12. DOI. CrossRefGoogle Scholar
  63. Prestes, A., Rigozo, N.R., Echer, E., Vieira, L.E.A.: 2006, Spectral analysis of sunspot number and geomagnetic indices (1868 – 2001). J. Atmos. Solar-Terr. Phys. 68, 182. DOI. ADSCrossRefGoogle Scholar
  64. Rieger, E., Kanbach, G., Reppin, C., Share, G.H., Forrest, D.J., Chupp, E.L.: 1984, A 154-day periodicity in the occurrence of hard solar flares? Nature 312, 623. DOI. ADSCrossRefGoogle Scholar
  65. Sammis, I., Tang, F., Zirin, H.: 2000, The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J. 540, 583. DOI. ADSCrossRefGoogle Scholar
  66. Scafetta, N., Willson, R.C.: 2013, Multiscale comparative spectral analysis of satellite total solar irradiance measurements from 2003 to 2013 reveals a planetary modulation of solar activity and its nonlinear dependence on the 11 yr solar cycle. Pattern Recogn. Phys. 1, 123. DOI. ADSCrossRefGoogle Scholar
  67. Sello, S.: 2003, Wavelet entropy and the multi-peaked structure of solar cycle maximum. New Astron. 8, 105. DOI. ADSCrossRefGoogle Scholar
  68. Sokoloff, D., Fioc, M., Nesme-Ribes, E.: 1995, Asymptotic properties of dynamo wave. Magnetohydrodynamics 31, 18. MathSciNetzbMATHGoogle Scholar
  69. Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61. ADSCrossRefGoogle Scholar
  70. Upton, L., Hathaway, D.H.: 2014, Predicting the Sun’s polar magnetic fields with a surface flux transport model. Astrophys. J. 780, 5. DOI. ADSCrossRefGoogle Scholar
  71. Verma, V.K., Joshi, G.C., Uddin, W., Paliwal, D.C.: 1991, Search for a 152 – 158 days periodicity in the occurrence rate of solar flares inferred from spectral data of radio bursts. Astron. Astrophys. Suppl. Ser. 90, 83. ADSGoogle Scholar
  72. Wheatland, M.S.: 2015, Estimating electric current densities in solar active regions. Solar Phys. 290, 1147. DOI. ADSCrossRefGoogle Scholar
  73. Yadav, R.K., Gastine, T., Christensen, U.R., Reiners, A.: 2015, Formation of starspots in self-consistent global dynamo models: polar spots on cool stars. Astron. Astrophys. 573, 14. DOI. CrossRefGoogle Scholar
  74. Zieba, S., Maslowski, J., Michalec, A., Kulak, A.: 2001, Periodicities in data observed during the minimum and the rising phase of solar cycle 23; years 1996 – 1999. Astron. Astrophys. 377, 297. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Space Science and TechnologiesAkdeniz University Faculty of ScienceAntalyaTurkey
  2. 2.Big Bear Solar ObservatoryBig Bear CityUSA
  3. 3.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)Troitsk, MoscowRussia
  4. 4.Kandilli Observatory and Earthquake Research InstituteBogazici UniversityIstanbulTurkey
  5. 5.Université de la Côte d’Azur (OCA-CNRS)Nice Cedex 4France
  6. 6.GrasseFrance

Personalised recommendations