Advertisement

Solar Physics

, 293:75 | Cite as

Statistical Analysis of Solar Events Associated with Storm Sudden Commencements over One Year of Solar Maximum During Cycle 23: Propagation from the Sun to the Earth and Effects

  • K. BocchialiniEmail author
  • B. Grison
  • M. Menvielle
  • A. Chambodut
  • N. Cornilleau-Wehrlin
  • D. Fontaine
  • A. Marchaudon
  • M. Pick
  • F. Pitout
  • B. Schmieder
  • S. Régnier
  • I. Zouganelis
Earth-affecting Solar Transients
Part of the following topical collections:
  1. Earth-affecting Solar Transients

Abstract

Taking the 32 storm sudden commencements (SSCs) listed by the International Service of Geomagnetic Indices (ISGI) of the Observatory de l’Ebre during 2002 (solar activity maximum in Cycle 23) as a starting point, we performed a multi-criterion analysis based on observations (propagation time, velocity comparisons, sense of the magnetic field rotation, radio waves) to associate them with solar sources, identified their effects in the interplanetary medium, and looked at the response of the terrestrial ionized and neutral environment. We find that 28 SSCs can be related to 44 coronal mass ejections (CMEs), 15 with a unique CME and 13 with a series of multiple CMEs, among which 19 (68%) involved halo CMEs. Twelve of the 19 fastest CMEs with speeds greater than 1000 km s−1 are halo CMEs. For the 44 CMEs, including 21 halo CMEs, the corresponding X-ray flare classes are: 3 X-class, 19 M-class, and 22 C-class flares. The probability for an SSC to occur is 75% if the CME is a halo CME. Among the 500, or even more, front-side, non-halo CMEs recorded in 2002, only 23 could be the source of an SSC, i.e. 5%. The complex interactions between two (or more) CMEs and the modification of their trajectories have been examined using joint white-light and multiple-wavelength radio observations. The detection of long-lasting type IV bursts observed at metric–hectometric wavelengths is a very useful criterion for the CME–SSC events association. The events associated with the most depressed Dst values are also associated with type IV radio bursts. The four SSCs associated with a single shock at L1 correspond to four radio events exhibiting characteristics different from type IV radio bursts. The solar-wind structures at L1 after the 32 SSCs are 12 magnetic clouds (MCs), 6 interplanetary coronal mass ejections (ICMEs) without an MC structure, 4 miscellaneous structures, which cannot unambiguously be classified as ICMEs, 5 corotating or stream interaction regions (CIRs/SIRs), one CIR caused two SSCs, and 4 shock events; note than one CIR caused two SSCs. The 11 MCs listed in 3 or more MC catalogs covering the year 2002 are associated with SSCs. For the three most intense geomagnetic storms (based on Dst minima) related to MCs, we note two sudden increases of the Dst, at the arrival of the sheath and the arrival of the MC itself. In terms of geoeffectiveness, the relation between the CME speed and the magnetic-storm intensity, as characterized using the Dst magnetic index, is very complex, but generally CMEs with velocities at the Sun larger than 1000 km s−1 have larger probabilities to trigger moderate or intense storms. The most geoeffective events are MCs, since 92% of them trigger moderate or intense storms, followed by ICMEs (33%). At best, CIRs/SIRs only cause weak storms. We show that these geoeffective events (ICMEs or MCs) trigger an increased and combined auroral kilometric radiation (AKR) and non-thermal continuum (NTC) wave activity in the magnetosphere, an enhanced convection in the ionosphere, and a stronger response in the thermosphere. However, this trend does not appear clearly in the coupling functions, which exhibit relatively weak correlations between the solar-wind energy input and the amplitude of various geomagnetic indices, whereas the role of the southward component of the solar-wind magnetic field is confirmed. Some saturation appears for Dst values \(< -100\) nT on the integrated values of the polar and auroral indices.

Keywords

Sun: CME Solar wind: ICME Earth: SSC, geoeffectiveness 

Notes

Acknowledgements

The results presented in this article rely on geomagnetic indices calculated and made available by ISGI Collaborating Institutes from data collected at magnetic observatories. We thank the national institutes involved, the INTERMAGNET network and ISGI ( isgi.unistra.fr ). The authors would like also to acknowledge the CDPP-Plasma Physics Data Centre ( cdpp.eu/ ) and MEDOC for SOHO data ( medoc.ias.u-psud.fr ). EIT movies can be found at www.ias.u-psud.fr/eit/movies/ and the list of CMEs at cdaw.gsfc.nasa.gov/ . The Cluster data used are on the Cluster Science Data System (CSDS) web site ( www.cluster.rl.ac.uk/csdsweb/ ). H. Kojima from RISH, Kyoto University, is thanked for making available Geotail Plasma Wave Instrument (PWI) dynamic spectra ( space.rish.kyoto-u.ac.jp/gtlpwi/ ). We thank the ACE/SWEPAM and the ACE/MAG instrument teams, and the ACE Science Center for providing the ACE data. SOHO is a project of international collaboration between ESA and NASA. The SOHO/LASCO data used here are produced by a consortium of the Naval Research Laboratory (USA), Max-Planck-Institut für Aeronomie (Germany), Laboratoire d’Astronomie Spatiale (France), and the University of Birmingham (UK). Wind/WAVES radio products and plots are provided by the National Aeronautics and Space Administration (GSFC). The Nançay Radioheliograph (NRH) and Decameter arrays (DAM) are operated by the Paris Observatory; the data are accessible through the “Radio Monitoring site” ( secchirh.obspm.fr ) and DAM data by request through the Nançay site. The Radio Solar Telescope Network (RSTN) is operated by the U.S. Air Force Weather Agency. We acknowledge the access to the radio data archives from several sites managed by solar observatories: ARTEMIS (Thermopylae, Athens University), Hiraiso (Japan), Nobeyama (Japan), Ondrejov (Czech Republic), ETH Zurich Radioastronomy (Switzerland). We thank G. Mann and J. Rendtel for the Potsdam radio spectra. Operation in 2002 of the northern SuperDARN radars was supported by the national funding agencies of the United States, Canada, the United Kingdom, France, and Japan. M. Pick thanks A. Hamini, R. Romagnan, and M.P. Issartel for their help in the data analysis and A. Lecacheux for fruitful discussions. N. Cornilleau-Wehrlin thanks P. Canu and O. Le Contel for fruitful discussions. B. Grison acknowledges support of GACR grant No 18-05285S, of the Praemium Academiae Award, and of the Europlanet 2020 research infrastructure. Europlanet 2020 RI has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 654208. The authors thank the referee for many helpful suggestions allowing us to improve this long article. The authors thank the Programme National Soleil-Terre. Finally, the authors want to express their warmest thanks to C. Lathuillère and N. Vilmer for their important collaboration at the beginning of this work.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Bain, H.M., Krucker, S., Saint-Hilaire, P., Raftery, C.L.: 2014, Radio imaging of a type IVM radio burst on the 14th of August 2010. Astrophys. J. 782, 43. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Bastian, T.S., Pick, M., Kerdraon, A., Maia, D., Vourlidas, A.: 2001, The coronal mass ejection of 1998 April 20: direct imaging at radio wavelengths. Astrophys. J. Lett. 558, L65. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Bein, B.M., Berkebile-Stoiser, S., Veronig, A.M., Temmer, M., Muhr, N., Kienreich, I., Utz, D., Vršnak, B.: 2011, Impulsive acceleration of coronal mass ejections. I. Statistics and coronal mass ejection source region characteristics. Astrophys. J. 738, 191. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Bein, B.M., Berkebile-Stoiser, S., Veronig, A.M., Temmer, M., Vršnak, B.: 2012, Impulsive acceleration of coronal mass ejections. II. Relation to soft X-ray flares and filament eruptions. Astrophys. J. 755, 44. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Borovsky, J.E., Denton, M.H.: 2006, Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 111, A07S08. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Bothmer, V., Zhukov, A.: 2007, The Sun as the prime source of space weather. In: Bothmer, V., Daglis, I.A. (eds.) Space Weather – Physics and Effects, Springer, Berlin, 31. DOI. ADS. CrossRefGoogle Scholar
  7. Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: the radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev. 71, 231. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Bowman, B.R., Tobiska, W.K., Marcos, F.A., Huang, C.Y., Lin, C.S., Burke, W.J.: 2008, A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In: AIAA/AAS Astrodynamics Specialist Conf., 6438. Google Scholar
  9. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Cane, H.V., Richardson, I.G.: 2003, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002. J. Geophys. Res. 108, 1156. DOI. ADS. CrossRefGoogle Scholar
  12. Caroubalos, C.: 1964, Contribution à l’étude de l’activitél solaire en relation avec ses effects gélophysiques. Ann. Astrophys. 27, 333. ADS. ADSGoogle Scholar
  13. Case, N.A., Wild, J.A.: 2013, The location of the Earth’s magnetopause: a comparison of modeled position and in situ Cluster data. J. Geophys. Res. 118, 6127. DOI. ADS. CrossRefGoogle Scholar
  14. Chiu, M.C., von-Mehlem, U.I., Willey, C.E., Betenbaugh, T.M., Maynard, J.J., Krein, J.A., Conde, R.F., Gray, W.T., Hunt, J.W. Jr., Mosher, L.E., McCullough, M.G., Panneton, P.E., Staiger, J.P., Rodberg, E.H.: 1998, ACE spacecraft. Space Sci. Rev. 86, 257. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Cho, K.-S., Bong, S.-C., Kim, Y.-H., Moon, Y.-J., Dryer, M., Shanmugaraju, A., Lee, J., Park, Y.D.: 2008, Low coronal observations of metric type II associated CMEs by MLSO coronameters. Astron. Astrophys. 491, 873. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Cid, C., Cremades, H., Aran, A., Mandrini, C., Sanahuja, B., Schmieder, B., Menvielle, M., Rodriguez, L., Saiz, E., Cerrato, Y., Dasso, S., Jacobs, C., Lathuillere, C., Zhukov, A.: 2012, Can a halo CME from the limb be geoeffective? J. Geophys. Res. 117, 11102. DOI. ADS. CrossRefGoogle Scholar
  17. Dauphin, C., Vilmer, N., Lüthi, T., Trottet, G., Krucker, S., Magun, A.: 2005, Modulations of broad-band radio continua and X-ray emissions in the large X-ray flare on 03 November 2003. Adv. Space Res. 35, 1805. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Davis, T.N., Sugiura, M.: 1966, Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variations. J. Geomagn. Geoelectr. 71, 785. Google Scholar
  19. Décréau, P.M.E., Fergeau, P., Krannosels’kikh, V., Leveque, M., Martin, P., Randriamboarison, O., Sene, F.X., Trotignon, J.G., Canu, P., Mogensen, P.B.: 1997, Whisper, a resonance sounder and wave analyser: performances and perspectives for the Cluster mission. Space Sci. Rev. 79, 157. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Décréau, P., Ducoin, C., Le Rouzic, G., Randriamboarison, O., Rauch, J., Trotignon, J., Vallières, X., Canu, P., Darrouzet, F., Gough, M., Buckley, A., Carozzi, T.: 2004, Observation of continuum radiations from the Cluster fleet: first results from direction finding. Ann. Geophys. 22, 2607. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Démoulin, P., Nakwacki, M.S., Dasso, S., Mandrini, C.H.: 2008, Expected in situ velocities from a hierarchical model for expanding interplanetary coronal mass ejections. Solar Phys. 250, 347. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Démoulin, P., Vourlidas, A., Pick, M., Bouteille, A.: 2012a, Initiation and development of the white-light and radio coronal mass ejection on 2001 April 15. Astrophys. J. 750, 147. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Démoulin, P., Vourlidas, A., Pick, M., Bouteille, A.: 2012b, Erratum: initiation and development of the white-light and radio coronal mass ejection on 2001 April 15. Astrophys. J. 754, 156. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Echer, E., Tsurutani, B.T., Gonzalez, W.D.: 2013, Interplanetary origins of moderate (\(-100~\text{nT} < \mathrm{Dst} < -50~\text{nT}\)) geomagnetic storms during solar cycle 23 (1996 – 2008). J. Geophys. Res. 118, 385. DOI. ADS. CrossRefGoogle Scholar
  26. Echer, E., Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L.C.: 2008, Interplanetary conditions causing intense geomagnetic storms (\(\mathrm{Dst} < -100~\text{nT}\)) during solar cycle 23 (1996 – 2006). J. Geophys. Res. 113, A05221. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Escoubet, C.P., Fehringer, M., Goldstein, M.: 2001, Introduction the Cluster mission. Ann. Geophys. 19, 1197. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Feng, S.W., Chen, Y., Kong, X.L, Li, G., Song, H.Q, Feng, X.S, Liu, Y.: 2012, Radio signatures of coronal-mass-ejection-streamer interaction and source diagnostics of type II radio burst. Astrophys. J. 753, 21. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Fleck, B., Domingo, V., Poland, A.I.: 1995, The SOHO mission. Solar Phys. 162. ADS.
  30. Forbes, J.M., Lu, G., Bruinsma, S., Nerem, S., Zhang, X.: 2005, Thermosphere density variations due to the 15 – 24 April 2002 solar events from champ/star accelerometer measurements. J. Geophys. Res. 110. DOI.
  31. Forsyth, R.J., Bothmer, V., Cid, C., Crooker, N.U., Horbury, T.S., Kecskemety, K., Klecker, B., Linker, J.A., Odstrcil, D., Reiner, M.J., Richardson, I.G., Rodriguez-Pacheco, J., Schmidt, J.M., Wimmer-Schweingruber, R.F.: 2006, ICMEs in the inner heliosphere: origin, evolution and propagation effects. Report of working group G. Space Sci. Rev. 123, 383. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Fox, N.J., Velli, M.C., Bale, S.D., Decker, R., Driesman, A., Howard, R.A., Kasper, J.C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M.K., McComas, D.J., Raouafi, N.E., Szabo, A.: 2016, The solar probe plus mission: humanity’s first visit to our star. Space Sci. Rev. 204, 7. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res. 99, 5771. DOI. ADSCrossRefGoogle Scholar
  34. Gonzalez, W.D., Echer, E., Clua-Gonzalez, A.L., Tsurutani, B.T.: 2007, Interplanetary origin of intense geomagnetic storms (\(\mathrm{Dst} < -100~\text{nT}\)) during solar cycle 23. Geophys. Res. Lett. 34, 6101. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2001, Radio signatures of coronal mass ejection interaction: coronal mass ejection cannibalism? Astrophys. J. Lett. 548, L91. DOI. ADSCrossRefGoogle Scholar
  36. Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Gopalswamy, N., Yashiro, S., Michalek, G., Xie, H., Mäkelä, P., Vourlidas, A., Howard, R.A.: 2010a, A catalog of halo coronal mass ejections from SOHO. Sun Geosph. 5, 7. ADS. ADSGoogle Scholar
  38. Gopalswamy, N., Xie, H., Mäkelä, P., Akiyama, S., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2010b, Interplanetary shocks lacking type II radio bursts. Astrophys. J. 710, 1111. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Mäkelä, P.: 2010c, Large geomagnetic storms associated with limb halo coronal mass ejections. Adv. Geosci. Solar Terr. 21, 71. ADS. Google Scholar
  40. Gosling, J.T.: 1990, Coronal mass ejections and magnetic flux ropes in interplanetary space. AGU Monogr. Ser. 58, Am. Geophys. Union, Washington, 343. ADS. Google Scholar
  41. Gough, M.P.: 1982, Non-thermal continuum emissions associated with electron injections – remote plasmapause sounding. Planet. Space Sci. 30, 657. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Greenwald, R.A., Baker, K.B., Dudeney, J.R., Pinnock, M., Jones, T.B., Thomas, E.C., Villain, J.-P., Cerisier, J.-C., Senior, C., Hanuise, C., Hunsucker, R.D., Sofko, G., Koehler, J., Nielsen, E., Pellinen, R., Walker, A.D.M., Sato, N., Yamagishi, H.: 1995, Darn/superdarn: a global view of the dynamics of high-latitude convection. Space Sci. Rev. 71, 761. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Grison, B., Sahraoui, F., Lavraud, B., Chust, T., Cornilleau-Wehrlin, N., Rème, H., Balogh, A., André, M.: 2005, Wave particle interactions in the high-altitude polar cusp: a Cluster case study. Ann. Geophys. 23(12), 3699. DOI. ADSCrossRefGoogle Scholar
  44. Hanuise, C., Cerisier, J.C., Auchère, F., Bocchialini, K., Bruinsma, S., Cornilleau-Wehrlin, N., Jakowski, N., Lathuillère, C., Menvielle, M., Valette, J.-J., Vilmer, N., Watermann, J., Yaya, P.: 2006, From the Sun to the Earth: impact of the 27 – 28 May 2003 solar events on the magnetosphere, ionosphere and thermosphere. Ann. Geophys. 24, 129. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Howard, T.: 2014, Space Weather and Coronal Mass Ejections. Springer, Berlin. ADS. CrossRefGoogle Scholar
  46. Huttunen, K.E.J., Schwenn, R., Bothmer, V., Koskinen, H.E.J.: 2005, Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Ann. Geophys. 23, 625. DOI. ADS. ADSCrossRefGoogle Scholar
  47. Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006a, Properties of interplanetary coronal mass ejections at one AU during 1995 2004. Solar Phys. 239, 393. DOI. ADS. ADSCrossRefGoogle Scholar
  48. Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006b, Properties of stream interactions at one AU during 1995 2004. Solar Phys. 239, 337. DOI. ADS. ADSCrossRefGoogle Scholar
  49. Kasaba, Y., Matsumoto, H., Hashimoto, K., Anderson, R.R., Bougeret, J.-L., Kaiser, M.L., Wu, X.Y., Nagano, I.: 1998, Remote sensing of the plasmapause during substorms: geotail observation of nonthermal continuum enhancement. J. Geophys. Res. 103(A9), 20389. DOI. ADSCrossRefGoogle Scholar
  50. Kerdraon, A., Delouis, J.-M.: 1997, The Nançay radioheliograph. In: Trottet, G. (ed.) Coronal Physics from Radio and Space Observations, Lect. Notes in Phys. 483, Springer, Berlin, 192. DOI. ADS. CrossRefGoogle Scholar
  51. Krauss, S., Temmer, M., Veronig, A.M., Baur, O., Lammer, H.: 2015, Thermosphere and geomagnetic response to interplanetary coronal mass ejections observed by ACE and GRACE: statistical results. J. Geophys. Res. 120, 8848. DOI. ADS. CrossRefGoogle Scholar
  52. Lathuillère, C., Menvielle, M., Marchaudon, A., Bruinsma, S.: 2008, A statistical study of the observed and modeled global thermosphere response to magnetic activity at middle and low latitudes. J. Geophys. Res. 113, 7311. DOI. ADS. CrossRefGoogle Scholar
  53. Leamon, R.J., Canfield, R.C., Jones, S.L., Lambkin, K., Lundberg, B.J., Pevtsov, A.A.: 2004, Helicity of magnetic clouds and their associated active regions. J. Geophys. Res. 109, A05106. DOI. ADS. ADSCrossRefGoogle Scholar
  54. Lepping, R.P., Berdichevsky, D.-B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.-J., Quivers, A.-J.: 2006, A summary of WIND magnetic clouds for years 1995 – 2003: model-fitted parameters, associated errors and classifications. Ann. Geophys. 24, 215. DOI. ADSCrossRefGoogle Scholar
  55. Li, Y., Luhmann, J.G., Lynch, B.J., Kilpua, E.K.J.: 2011, Cyclic reversal of magnetic cloud poloidal field. Solar Phys. 270, 331. DOI. ADS. ADSCrossRefGoogle Scholar
  56. Lin, J., Raymond, J.C., van Ballegooijen, A.A.: 2004, The role of magnetic reconnection in the observable features of solar eruptions. Astrophys. J. 602, 422. DOI. ADS. ADSCrossRefGoogle Scholar
  57. Liu, Y.D., Yang, Z., Wang, R., Luhman, J.G., Richardson, J.D., Lugaz, N.: 2014, Sun-to-Earth characteristics of two coronal mass ejections interacting near 1 AU: formation of a complex ejecta and generation of a two-step geomagnetic storm Astrophys. J. Lett. 793, L41. DOI ADS. ADSCrossRefGoogle Scholar
  58. Louarn, P.: 2006, Generation of aurora kilometric radiation in bounded source regions. In: LaBelle, J.W., Treumann, R.A. (eds.) Geospace Electromagnetic Waves and Radiation, Lect. Notes Phys. 687, Springer, Berlin, 55. DOI. CrossRefGoogle Scholar
  59. Louarn, P., Hilgers, A., Roux, A., de Villedary, C., Gurnett, D.A., Kurth, W.S.: 1994, Correlation between terrestrial myriametric and kilometric radio bursts observed with Galileo. J. Geophys. Res. 99, 23. ADS. ADSCrossRefGoogle Scholar
  60. Luoni, M.L., Mandrini, C.H., Dasso, S., van Driel-Gesztelyi, L., Démoulin, P.: 2005, Tracing magnetic helicity from the solar corona to the interplanetary space. J. Atmos. Solar-Terr. Phys. 67, 1734. DOI. ADS. ADSCrossRefGoogle Scholar
  61. Martínez Oliveros, J.C., Raftery, C.L., Bain, H.M, Liu, Y., Krupar, V., Bale, S., Krucker, S.: 2012, The 2010 August 1 type II burst: a CME-CME interaction and its radio and white-light manifestations. Astrophys. J. 748, 66. DOI. ADS. ADSCrossRefGoogle Scholar
  62. Matsumoto, H., Nagano, I., Anderson, R.R., Kojima, H., Hashimoto, K., Tsutsui, M., Okada, T., Kimura, I., Omura, Y., Okada, M.: 1994, Plasma wave observations with GEOTAIL spacecraft. J. Geomagn. Geoelectr. 46(1), 59. DOI. ADSCrossRefGoogle Scholar
  63. Mayaud, P.N.: 1980, Derivation, meaning, and use of geomagnetic indices. In: Spilhaus, Jr., A.F. (eds.), Geophys. Monogr. Ser., 22, Am. Geophys. Union, Washington, 1. Google Scholar
  64. McCreadie, H., Menvielle, M.: 2010, The PC index: review of methods. Ann. Geophys. 28, 1887. DOI. ADSCrossRefGoogle Scholar
  65. Menvielle, M., Berthelier, A.: 1991, The K-derived planetary indices: description and availability. Rev. Geophys. Space Phys. 29, 415. DOI. CrossRefGoogle Scholar
  66. Menvielle, M., Lathuillère, C., Bruinsma, S., Viereck, R.: 2007, A new method for studying the thermospheric density variability derived from CHAMP/STAR accelerometer data for magnetically active conditions. Ann. Geophys. 25, 1949. DOI. ADS. ADSCrossRefGoogle Scholar
  67. Menvielle, M., Iyemori, T., Marchaudon, A., Nose, M.: 2011, Geomagnetic indices. In: Mandea, M., Korte, M. (eds.) Geomagnetic Observations and Models, IAGA Special Sopron Book Series, Q2, 5 Springer, Berlin, 183. DOI. CrossRefGoogle Scholar
  68. Müller, D., Marsden, R.G., St. Cyr, O.C., Gilbert, H.R.: 2013, Solar orbiter. Solar Phys. 285(1), 25. DOI. ADSCrossRefGoogle Scholar
  69. Newell, P.T., Sotirelis, T., Liou, K., Meng, C.-I., Rich, F.J.: 2007, A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. 112, 1206. DOI. ADS. CrossRefGoogle Scholar
  70. Nishida, A.: 1994, The GEOTAIL mission. Geophys. Res. Lett. 21, 2871. DOI. ADS. ADSCrossRefGoogle Scholar
  71. Nose, M., Iyemori, T., Sugiura, M., Kamei, T.: 2015, Geomagnetic Dst Index, World Data Center for Geomagnetism, Kyoto, DOI. CrossRefGoogle Scholar
  72. Perreault, W.K., Akasofu, S.-I.: 1978, A study of geomagnetic storms. Geophys. J. Roy. Astron. Soc. 54, 547. ADSCrossRefGoogle Scholar
  73. Pick, M., Démoulin, P., Krucker, S., Malandraki, O., Maia, D.: 2005, Radio and X-ray signatures of magnetic reconnection behind an ejected flux rope. Astrophys. J. 625, 1019. DOI. ADS. ADSCrossRefGoogle Scholar
  74. Pick, M., Stenborg, G., Démoulin, P., Zucca, P., Lecacheux, A.: 2016, Homologous solar events on 2011 January 27: build-up and propagation in a complex coronal environment. Astrophys. J. 823, 5. DOI. ADS. ADSCrossRefGoogle Scholar
  75. Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C.: 2002, NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107, 1468. DOI. CrossRefGoogle Scholar
  76. Reigber, C., Lühr, H., Schwintzer, P.: 2002, CHAMP mission status. Adv. Space Res. 30, 129. DOI. ADS. ADSCrossRefGoogle Scholar
  77. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189. DOI. ADS. ADSCrossRefGoogle Scholar
  78. Ruohoniemi, J.M., Greenwald, R.A.: 1996, Statistical patterns of high-latitude convection obtained from Goose Bay HF radar observations. J. Geophys. Res. 101, 21743. DOI. ADS. ADSCrossRefGoogle Scholar
  79. Ruohoniemi, J.M., Greenwald, R.A.: 2005, Dependencies of high-latitude plasma convection: consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns. J. Geophys. Res. 110, A09204. DOI. ADS. ADSCrossRefGoogle Scholar
  80. Ruzmaikin, A., Martin, S., Hu, Q.: 2003, Signs of magnetic helicity in interplanetary coronal mass ejections and associated prominences: case study. J. Geophys. Res. 108, 1096. DOI. ADS. CrossRefGoogle Scholar
  81. Saiz, E., Cerrato, Y., Cid, C., Dobrica, V., Hejda, P., Nenovski, P., Stauning, P., Bochnicek, J., Danov, D., Demetrescu, C., Gonzalez, W.D., Maris, G., Teodosiev, D., Valach, F.: 2013, Geomagnetic response to solar and interplanetary disturbances. J. Space Weather Space Clim. 3, A260000. DOI. ADS. CrossRefGoogle Scholar
  82. Schmieder, B.: 2017, Extreme solar storms based on solar magnetic field. J. Atmos. Solar-Terr. Phys. DOI. CrossRefGoogle Scholar
  83. Schmieder, B., Aulanier, G., Vršnak, B.: 2015, Flare-CME models: an observational perspective (invited review). Solar Phys.. DOI. ADS. CrossRefGoogle Scholar
  84. Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23, 1033. DOI. ADS. ADSCrossRefGoogle Scholar
  85. Sibeck, D.G., Lopez, R.E., Roelof, E.C.: 1991, Solar wind control of the magnetopause shape, location, and motion. J. Geophys. Res. 96(A4), 5489. DOI. ADSCrossRefGoogle Scholar
  86. Siscoe, G.L., Crooker, N.U., Siebert, K.D.: 2002, Transpolar potential saturation: roles of region 1 current system and solar wind ram pressure. J. Geophys. Res. 107(A10), SMP 21, 1321. DOI. CrossRefGoogle Scholar
  87. Sugiura, M.: 1964, Hourly values of equatorial Dst for the IGY. Ann. Int. Geophys., 35, 49. Google Scholar
  88. Svalgaard, L.: 1977, Geomagnetic activity: dependence on solar wind parameters. In: Zirker, J. (ed.) Skylab Workshop Monograph on Coronal Holes, 35, Colorado Univ. Press, Boulder, 371. Google Scholar
  89. Taylor, J.R., Lester, M., Yeoman, T.K., 1994, A superposed epoch analysis of geomagnetic storms. Ann. Geophys. 12, 612. DOI. ADS. ADSCrossRefGoogle Scholar
  90. Tian, A.M., Zong, Q.G., Wang, Y.F., Shi, Q.Q., Fu, S.Y., Pu, Z.Y.: 2010, A series of plasma flow vortices in the tail plasma sheet associated with solar wind pressure enhancement. J. Geophys. Res. 115, 9204. DOI. ADS. CrossRefGoogle Scholar
  91. Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2013, Propagation of interplanetary coronal mass ejections: the drag-based model. Solar Phys. 285, 295. DOI. ADS. ADSCrossRefGoogle Scholar
  92. Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: observations. Living Rev. Solar Phys. 9, 3. DOI. ADSCrossRefGoogle Scholar
  93. Wimmer-Schweingruber, R.F.: 2014, Interplanetary disturbances affecting space weather. In: Schmieder, B., Malherbe, J.-M., Wu, S.T. (eds.) IAU Symp., 300, Cambridge University Press, Cambridge, 297. DOI. ADS. CrossRefGoogle Scholar
  94. Xie, H., Gopalswamy, N., Lara, A., Yashiro, S.: 2004, Improved Empirical CME Arrival Time Prediction Model. AGU Fall Meeting Abs. ADS.
  95. Yashiro, S., Akiyama, S., Gopalswamy, N., Howard, R.A.: 2006, Different power-law indices in the frequency distributions of flares with and without coronal mass ejections. Astrophys. J. Lett. 650, L143. DOI. ADS. ADSCrossRefGoogle Scholar
  96. Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mathrm{Dst} < -100~\text{nT}\)) during 1996 – 2005. J. Geophys. Res. 112, 10102. DOI. ADS. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • K. Bocchialini
    • 1
    Email author
  • B. Grison
    • 2
  • M. Menvielle
    • 3
    • 4
  • A. Chambodut
    • 5
  • N. Cornilleau-Wehrlin
    • 6
    • 7
  • D. Fontaine
    • 7
  • A. Marchaudon
    • 8
    • 9
  • M. Pick
    • 6
  • F. Pitout
    • 8
    • 9
  • B. Schmieder
    • 6
  • S. Régnier
    • 10
  • I. Zouganelis
    • 11
  1. 1.Institut d’Astrophysique Spatiale, Univ. Paris-Sud, CNRSUniversité Paris-SaclayOrsay CEDEXFrance
  2. 2.Institute of Atmospheric Physics CASPrague 4Czech Republic
  3. 3.CNRS, Laboratoire Atmosphères, Milieux, Observations SpatialesUniversité Versailles Saint QuentinGuyancourtFrance
  4. 4.Département des Sciences de la TerreUniv. Paris SudOrsay CEDEXFrance
  5. 5.Institut de Physique du Globe de Strasbourg, UMR7516, CNRSUniversité de Strasbourg/EOSTStrasbourg CEDEXFrance
  6. 6.Observatoire de Paris, LESIAPSL Research UniversityMeudon CEDEXFrance
  7. 7.LPP, CNRS, Ecole Polytechnique, UPMC Univ. Paris 06, Univ. Paris Sud, Observatoire de Paris, Université Paris-Saclay, Sorbonne Universités, PSL Research UniversityEcole PolytechniquePalaiseau CEDEXFrance
  8. 8.Institut de Recherche en Astrophysique et PlanétologieUniversité de ToulouseToulouseFrance
  9. 9.CNRSUMR 5277Toulouse CEDEX 4France
  10. 10.Department of Mathematics, Physics and Electrical EngineeringNorthumbria UniversityNewcastle upon TyneUK
  11. 11.European Space AgencyESACMadridSpain

Personalised recommendations