Advertisement

Solar Physics

, 293:25 | Cite as

Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations

  • T. Nieves-Chinchilla
  • A. Vourlidas
  • J. C. Raymond
  • M. G. Linton
  • N. Al-haddad
  • N. P. Savani
  • A. Szabo
  • M. A. Hidalgo
Earth-affecting Solar Transients
Part of the following topical collections:
  1. Earth-affecting Solar Transients

Abstract

The magnetic topology, structure, and geometry of the magnetic obstacles embedded within interplanetary coronal mass ejections (ICMEs) are not yet fully and consistently described by in situ models and reconstruction techniques. The main goal of this work is to better understand the status of the internal magnetic field of ICMEs and to explore in situ signatures to identify clues to develop a more accurate and reliable in situ analytical models. We take advantage of more than 20 years of Wind observations of transients at 1 AU to compile a comprehensive database of ICMEs through three solar cycles, from 1995 to 2015. The catalog is publicly available at wind.gsfc.nasa.gov and is fully described in this article. We identify and collect the properties of 337 ICMEs, of which 298 show organized magnetic field signatures. To allow for departures from idealized magnetic configurations, we introduce the term “magnetic obstacle” (MO) to signify the possibility of more complex configurations. To quantify the asymmetry of the magnetic field strength profile within these events, we introduce the distortion parameter (DiP) and calculate the expansion velocity within the magnetic obstacle. Circular-cylindrical geometry is assumed when the magnetic field strength displays a symmetric profile. We perform a statistical study of these two parameters and find that only 35% of the events show symmetric magnetic profiles and a low enough expansion velocity to be compatible with the assumption of an idealized cylindrical static flux rope, and that 41% of the events do not show the expected relationship between expansion and magnetic field compression in the front, with the maximum magnetic field closer to the first encounter of the spacecraft with the magnetic obstacle; 18% show contractions (i.e. apparent negative expansion velocity), and 30% show magnetic field compression in the back. We derive an empirical relation between DiP and expansion velocity that is the first step toward improving reconstructions with possible applications to space weather studies. In summary, our main results demonstrate that the assumed correlation between expanding structure and asymmetric magnetic field is not always valid. Although 59% of the cases could be described by circular-cylindrical geometry, with or without expansion, the remaining cases show significant in situ signatures of departures from circular-cylindrical geometry. These results will aid in the development of more accurate in situ models to reconcile image.

Keywords

Coronal mass ejection Flux rope Solar wind 

Notes

Acknowledgements

This research has made use of the Wind plasma and magnetic field data throughout. We thank to the Wind team and the NASA’s Space Physics Data Facility (SPDF) to make the data available. The work of N. Al-haddad and T. Nieves-Chinchilla is supported by the National Science Foundation under AGS-1433086 grant. The work of T. Nieves-Chinchilla, A. Vourlidas, M.G. Linton, and J.C. Raymond is supported by the NASA LWS program through ROSES NNH13ZDA001N. T. Nieves-Chinchilla thanks to Leila Markus, Anna Chulaki, Lynn Wilson III, and Charlie Farrugia the discussions and comments to the article.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Al-Haddad, N., Nieves-Chinchilla, T., Savani, N.P., Möstl, C., Marubashi, K., Hidalgo, M.A., Roussev, I.I., Poedts, S., Farrugia, C.J.: 2013, Magnetic field configuration models and reconstruction methods for interplanetary coronal mass ejections. Solar Phys. 284, 129. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Berdichevsky, D.B.: 2013, On fields and mass constraints for the uniform propagation of magnetic-flux ropes undergoing isotropic expansion. Solar Phys. 284, 245. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Berdichevsky, D.B., Lepping, R.P., Farrugia, C.J.: 2003, Geometric considerations of the evolution of magnetic flux ropes. Phys. Rev. E 67(3), 036405. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Burlaga, L.F.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93, 7217. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Burlaga, L.F., Plunkett, S.P., St. Cyr, O.C.: 2002, Successive CMEs and complex ejecta. J. Geophys. Res. 107, 1266. DOI. ADS. CrossRefGoogle Scholar
  6. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Burlaga, L., Fitzenreiter, R., Lepping, R., Ogilvie, K., Szabo, A., Lazarus, A., Steinberg, J., Gloeckler, G., Howard, R., Michels, D., Farrugia, C., Lin, R.P., Larson, D.E.: 1998, A magnetic cloud containing prominence material: January 1997. J. Geophys. Res. 103(A1), 277. DOI. ADSCrossRefGoogle Scholar
  8. Cane, H.V., Richardson, I.G., Wibberenz, G.: 1997, Helios 1 and 2 observations of particle decreases, ejecta, and magnetic clouds. J. Geophys. Res. 102(A4), 7075. DOI. ADSCrossRefGoogle Scholar
  9. Dasso, S., Démoulin, P., Gulisano, A.M.: 2012, Magnetic clouds along the solar cycle: Expansion and magnetic helicity. In: Mandrini, C.H., Webb, D.F. (eds.) Comparative Magnetic Minima: Characterizing Quiet Times in the Sun and Stars, IAU Symp. 286, 139. DOI. ADS. Google Scholar
  10. Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L.: 2006, A new model-independent method to compute magnetic helicity in magnetic clouds. Astron. Astrophys. 455, 349. DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  11. Dasso, S., Nakwacki, M.S., Démoulin, P., Mandrini, C.H.: 2007, Progressive transformation of a flux rope to an ICME. Comparative analysis using the direct and fitted expansion methods. Solar Phys. 244, 115. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Dasso, S., Mandrini, C.H., Schmieder, B., Cremades, H., Cid, C., Cerrato, Y., Saiz, E., Démoulin, P., Zhukov, A.N., Rodriguez, L., Aran, A., Menvielle, M., Poedts, S.: 2009, Linking two consecutive nonmerging magnetic clouds with their solar sources. J. Geophys. Res. 114, A02109. DOI. ADS. ADSCrossRefGoogle Scholar
  13. DeForest, C.E., Howard, T.A., McComas, D.J.: 2013, Tracking coronal features from the low corona to Earth: A quantitative analysis of the 2008 December 12 coronal mass ejection. Astrophys. J. 769, 43. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Démoulin, P., Dasso, S.: 2009, Causes and consequences of magnetic cloud expansion. Astron. Astrophys. 498, 551. DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  15. Démoulin, P., Nakwacki, M.S., Dasso, S., Mandrini, C.H.: 2008, Expected in situ velocities from a hierarchical model for expanding interplanetary coronal mass ejections. Solar Phys. 250, 347. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Echer, E., Tsurutani, B.T., Gonzalez, W.D.: 2013, Interplanetary origins of moderate (\(-100~\mbox{nT} < \mbox{Dst} \le -50~\mbox{nT}\)) geomagnetic storms during Solar Cycle 23 (1996 – 2008). J. Geophys. Res. 118, 385. DOI. ADS. CrossRefGoogle Scholar
  17. Farrugia, C.J., Burlaga, L.F., Osherovich, V.A., Richardson, I.G., Freeman, M.P., Lepping, R.P., Lazarus, A.J.: 1993, A study of an expanding interplanatary magnetic cloud and its interaction with the Earth’s magnetosphere – The interplanetary aspect. J. Geophys. Res. 98, 7621. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2001, Radio signatures of coronal mass ejection interaction: Coronal mass ejection cannibalism? Astrophys. J. Lett. 548, L91. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Gopalswamy, N., Yashiro, S., Michalek, G., Xie, H., Lepping, R.P., Howard, R.A.: 2005, Solar source of the largest geomagnetic storm of cycle 23. Geophys. Res. Lett. 32, 12. DOI. ADS. CrossRefGoogle Scholar
  20. Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H., Mäkelä, P., Michalek, G.: 2014, Anomalous expansion of coronal mass ejections during Solar Cycle 24 and its space weather implications. Geophys. Res. Lett. 41, 2673. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Mäkelä, P.: 2015, Properties and geoeffectiveness of magnetic clouds during Solar Cycles 23 and 24. J. Geophys. Res. 120, 9221. DOI. ADS. CrossRefGoogle Scholar
  22. Gulisano, A.M., Démoulin, P., Dasso, S., Ruiz, M.E., Marsch, E.: 2010, Global and local expansion of magnetic clouds in the inner heliosphere. Astron. Astrophys. 509, A39. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Gulisano, A.M., Démoulin, P., Dasso, S., Rodriguez, L.: 2012, Expansion of magnetic clouds in the outer heliosphere. Astron. Astrophys. 543, A107. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Hidalgo, M.A.: 2003, A study of the expansion and distortion of the cross section of magnetic clouds in the interplanetary medium. J. Geophys. Res. 108, 1320. DOI. ADS. CrossRefGoogle Scholar
  25. Hidalgo, M.A., Nieves-Chinchilla, T.: 2012, A global magnetic topology model for magnetic clouds. I. Astrophys. J. 748, 109. DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  26. Hidalgo, M.A., Nieves-Chinchilla, T., Cid, C.: 2002, Elliptical cross-section model for the magnetic topology of magnetic clouds. Geophys. Res. Lett. 29(13), 130000. DOI. ADS. CrossRefGoogle Scholar
  27. Hidalgo, M.A., Cid, C., Medina, J., Viñas, A.F.: 2000, A new model for the topology of magnetic clouds in the solar wind. Solar Phys. 194, 165. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Hundhausen, A.J., Sawyer, C.B., House, L., Illing, R.M.E., Wagner, W.J.: 1984, Coronal mass ejections observed during the solar maximum mission – Latitude distribution and rate of occurrence. J. Geophys. Res. 89, 2639. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Huttunen, K.E.J., Schwenn, R., Bothmer, V., Koskinen, H.E.J.: 2005, Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of Solar Cycle 23. Ann. Geophys. 23, 625. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Janvier, M., Dasso, S., Démoulin, P., Masías-Meza, J.J., Lugaz, N.: 2015, Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU. J. Geophys. Res. 120, 3328. DOI. ADS. CrossRefGoogle Scholar
  31. Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Kilpua, E.K.J., Lee, C.O., Luhmann, J.G., Li, Y.: 2011, Interplanetary coronal mass ejections in the near-Earth solar wind during the minimum periods following solar cycles 22 and 23. Ann. Geophys. 29, 1455. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 87, 613. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Lepping, R.P., Wu, C.-C.: 2007, On the variation of interplanetary magnetic cloud type through Solar Cycle 23: Wind events. J. Geophys. Res. 112, A10103. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Lepping, R.P., Burlaga, L.F., Jones, J.A.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Lepping, R.P., Wu, C.-C., Berdichevsky, D.B.: 2005, Automatic identification of magnetic clouds and cloud-like regions at 1 AU: Occurrence rate and other properties. Ann. Geophys. 23, 2687. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley, E.M.: 1995, The wind magnetic field investigation. Space Sci. Rev. 71, 207. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Lepping, R.P., Burlaga, L.F., Szabo, A., Ogilvie, K.W., Mish, W.H., Vassiliadis, D., Lazarus, A.J., Steinberg, J.T., Farrugia, C.J., Janoo, L., Mariani, F.: 1997, The wind magnetic cloud and events of October 18 – 20, 1995: Interplanetary properties and as triggers for geomagnetic activity. J. Geophys. Res. 102, 14049. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, A.J.: 2006, A summary of WIND magnetic clouds for years 1995 – 2003: Model-fitted parameters, associated errors and classifications. Ann. Geophys. 24, 215. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2011, Magnetic clouds at/near the 2007 – 2009 solar minimum: Frequency of occurrence and some unusual properties. Solar Phys. 274, 345. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A.: 2015, Wind magnetic clouds for 2010 – 2012: Model parameter fittings, associated shock waves, and comparisons to earlier periods. Solar Phys. 290, 2265. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Lugaz, N., Farrugia, C.J., Smith, C.W., Paulson, K.: 2015, Shocks inside CMEs: A survey of properties from 1997 to 2006. J. Geophys. Res. 120, 2409. DOI. ADS. CrossRefGoogle Scholar
  43. Lugaz, N., Temmer, M., Wang, Y., Farrugia, C.J.: 2017, The interaction of successive coronal mass ejections: A review. Solar Phys. 292, 64. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Lundquist, S.: 1950, Magnetohydrostatic fields. Ark. Fys. 2, 361. MathSciNetzbMATHGoogle Scholar
  45. Lynch, B.J., Zurbuchen, T.H., Fisk, L.A., Antiochos, S.K.: 2003, Internal structure of magnetic clouds: Plasma and composition. J. Geophys. Res. 108, 1239. DOI. ADS. CrossRefGoogle Scholar
  46. Lynnyk, A., Vandas, M.: 2009, Fitting of expanding magnetic clouds: A statistical study. Planet. Space Sci. 57(12), 1375. DOI. ADSCrossRefGoogle Scholar
  47. Marubashi, K.: 1997, Interplanetary Magnetic Flux Ropes and Solar Filaments, Geophys. Monograph Ser. 99, Am. Geophys. Union, Washington, 147. DOI. ADS. Google Scholar
  48. Mohamed, A.A., Gopalswamy, N., Yashiro, S., Akiyama, S., Mäkelä, P., Xie, H., Jung, H.: 2012, The relation between coronal holes and coronal mass ejections during the rise, maximum, and declining phases of Solar Cycle 23. J. Geophys. Res. 117, 1103. DOI. ADS. CrossRefGoogle Scholar
  49. Nieves-Chinchilla, T., Hidalgo, M.A., Sequeiros, J.: 2005, Magnetic clouds observed at 1 AU during the period 2000 – 2003. Solar Phys. 232, 105. DOI. ADS. ADSCrossRefGoogle Scholar
  50. Nieves-Chinchilla, T., Colaninno, R., Vourlidas, A., Szabo, A., Lepping, R.P., Boardsen, S.A., Anderson, B.J., Korth, H.: 2012, Remote and in situ observations of an unusual Earth-directed coronal mass ejection from multiple viewpoints. J. Geophys. Res. 117, A06106. DOI. ADS. ADSCrossRefGoogle Scholar
  51. Nieves-Chinchilla, T., Linton, M.G., Hidalgo, M.A., Vourlidas, A., Savani, N.P., Szabo, A., Farrugia, C., Yu, W.: 2016, A circular-cylindrical flux-rope analytical model for magnetic clouds. Astrophys. J. 823(1), 27. DOI. ADSCrossRefGoogle Scholar
  52. Odstrcil, D., Pizzo, V.J.: 1999, Distortion of the interplanetary magnetic field by three-dimensional propagation of coronal mass ejections in a structured solar wind. J. Geophys. Res. 104, 28225. DOI. ADS. ADSCrossRefGoogle Scholar
  53. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev. 71, 55. DOI. ADS. ADSCrossRefGoogle Scholar
  54. Osherovich, V., Fainberg, J., Webb, A.: 2013, Observational evidence for a double-helix structure in CMEs and magnetic clouds. Solar Phys. 284, 261. DOI. ADS. ADSCrossRefGoogle Scholar
  55. Osherovich, V.A., Farrugia, C.J., Burlaga, L.F.: 1993, Dynamics of aging magnetic clouds. Adv. Space Res. 13, 57. DOI. ADS. ADSCrossRefGoogle Scholar
  56. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189. DOI. ADS. ADSCrossRefGoogle Scholar
  57. Riley, P., Linker, J.A., Lionello, R., Mikić, Z., Odstrcil, D., Hidalgo, M.A., Cid, C., Hu, Q., Lepping, R.P., Lynch, B.J., Rees, A.: 2004, Fitting flux ropes to a global MHD solution: A comparison of techniques. J. Atmos. Solar-Terr. Phys. 66, 1321. DOI. ADS. ADSCrossRefGoogle Scholar
  58. Rodriguez, L., Masías-Meza, J.J., Dasso, S., Démoulin, P., Zhukov, A.N., Gulisano, A.M., Mierla, M., Kilpua, E., West, M., Lacatus, D., Paraschiv, A., Janvier, M.: 2016, Typical profiles and distributions of plasma and magnetic field parameters in magnetic clouds at 1 AU. Solar Phys. 291, 2145. DOI. ADS. ADSCrossRefGoogle Scholar
  59. Ruffenach, A., Lavraud, B., Owens, M.J., Sauvaud, J.-A., Savani, N.P., Rouillard, A.P., Démoulin, P., Foullon, C., Opitz, A., Fedorov, A., Jacquey, C.J., Génot, V., Louarn, P., Luhmann, J.G., Russell, C.T., Farrugia, C.J., Galvin, A.B.: 2012, Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. J. Geophys. Res. 117, A09101. DOI. ADS. ADSCrossRefGoogle Scholar
  60. Vandas, M., Fischer, S., Pelant, P., Dryer, M., Smith, Z., Detman, T.: 1997, Propagation of a spheromak 1. Some comparisons of cylindrical and spherical magnetic clouds. J. Geophys. Res. 102, 24183. DOI. ADS. ADSCrossRefGoogle Scholar
  61. Wang, Y., Zhou, Z., Shen, C., Liu, R., Wang, S.: 2015, Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model. J. Geophys. Res. 120, 1543. DOI. ADS. CrossRefGoogle Scholar
  62. Wood, B.E., Wu, C.-C., Lepping, R.P., Nieves-Chinchilla, T., Howard, R.A., Linton, M.G., Socker, D.G.: 2017, A STEREO survey of magnetic cloud coronal mass ejections observed at Earth in 2008 – 2012. Astrophys. J. Suppl. 229, 29. DOI. ADS. ADSCrossRefGoogle Scholar
  63. Wu, C.-C., Lepping, R.P.: 2011, Statistical comparison of magnetic clouds with interplanetary coronal mass ejections for Solar Cycle 23. Solar Phys. 269, 141. DOI. ADS. ADSCrossRefGoogle Scholar
  64. Wu, C.-C., Lepping, R.P.: 2015, Comparisons of characteristics of magnetic clouds and cloud-like structures during 1995 – 2012. Solar Phys. 290, 1243. DOI. ADS. ADSCrossRefGoogle Scholar
  65. Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123(1), 31. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Heliophysics Science DivisionGoddard Space Flight Center – NASAGreenbeltUSA
  2. 2.Department of PhysicsThe Catholic University of AmericaWashingtonUSA
  3. 3.Applied Physics Lab.Johns Hopkins UniversityLaurelUSA
  4. 4.IAASARSObservatory of AthensAthensGreece
  5. 5.Smithsonian Astrophysical ObservatoryCambridgeUSA
  6. 6.Heliophysics Theory and Modeling SectionNaval Research LaboratoryWashingtonUSA
  7. 7.University of Maryland Baltimore CountyBaltimoreUSA
  8. 8.Departamento de FisicaUniversidad de AlcalaMadridSpain

Personalised recommendations