Solar Physics

, 293:24 | Cite as

Correlation Between the Magnetic Field and Plasma Parameters at 1 AU

  • Zicai Yang
  • Fang Shen
  • Jie Zhang
  • Yi Yang
  • Xueshang Feng
  • Ian G. Richardson
Earth-affecting Solar Transients
Part of the following topical collections:
  1. Earth-affecting Solar Transients


The physical parameters of the solar wind observed in-situ near 1 AU have been studied for several decades, and relationships between them, such as the positive correlation between the solar wind plasma temperature, \(T\), and velocity, \(V\), and the negative correlation between density, \(N\), and velocity, \(V\), are well known. However, the magnetic field intensity, \(B\), does not appear to be well correlated with any individual plasma parameter. In this article, we discuss previously under-reported correlations between \(B\) and the combined plasma parameters \(\sqrt{N V^{2}} \) as well as between \(B\) and \(\sqrt{NT}\). These two correlations are strong during periods of corotating interaction regions and high-speed streams, and moderate during intervals of slow solar wind. The results indicate that the magnetic pressure in the solar wind is well correlated both with the plasma dynamic pressure and the thermal pressure.


Solar wind Correlation Magnetic fields CIR 



We acknowledge the use of solar wind data obtained from the GSFC/SPDF OMNI Web interface at . This work is jointly supported by grants from the National Natural Science Foundation of China (41474152, 41531073 and 41774184), and the Specialized Research Fund for State Key Laboratories. FS is also supported by the National Program for Support of Top-notch Young Professionals. JZ is supported by NSF AGS-1249270 and AGS-1460188. IGR acknowledges support from the ACE project. We are also grateful to the anonymous reviewer for the constructive and helpful comments.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Borrini, G., Gosling, J.T., Bame, S.J., Feldman, W.C., Wilcox, J.M.: 1981, Solar wind helium and hydrogen structure near the heliospheric current sheet: a signal of coronal streamers at 1 AU. J. Geophys. Res. 86, 4565. DOI. ADSCrossRefGoogle Scholar
  2. Burlaga, L.F., Ogilvie, K.W.: 1970a, Heating of the solar wind. Astrophys. J. 159, 659. DOI. ADSCrossRefGoogle Scholar
  3. Burlaga, L.F., Ogilvie, K.W.: 1970b, Magnetic and thermal pressures in the solar wind. Solar Phys. 15, 61. DOI. ADSCrossRefGoogle Scholar
  4. Brekke, P., Fleck, B., Gurman, J.B. (eds.): 2001, Recent Insights into the Physics of the Sun and Heliosphere: Highlights from SOHO and other Space Missions. IAU Symp. 203. Google Scholar
  5. Coleman, P.J.: 1966, Variations in the interplanetary magnetic field: Mariner 2: 1. Observed properties. J. Geophys. Res. 71, 5509. DOI. ADSCrossRefGoogle Scholar
  6. Chat, G.L., Issautier, K., Meyer-Vernet, N.: 2012, The solar wind energy flux. Solar Phys. 279, 197. DOI. ADSCrossRefGoogle Scholar
  7. Elliott, H.A., McComas, D.J., Schwadron, N.A., Gosling, J.T., Skoug, R.M., Gloeckler, G., et al.: 2005, An improved expected temperature formula for identifying interplanetary coronal mass ejections. J. Geophys. Res. 110, A04103. DOI. ADSCrossRefGoogle Scholar
  8. Gosling, J.T., Hundhausen, A.J., Pizzo, V., Asbridge, J.R.: 1972, Compressions and rarefactions in the solar wind: Vela 3. J. Geophys. Res. 77, 5442. DOI. ADSCrossRefGoogle Scholar
  9. Gosling, J.T., Asbridge, J.R., Bame, S.J., Feldman, W.C.: 1978, Solar wind stream interfaces. J. Geophys. Res. 83, 1401. DOI. ADSCrossRefGoogle Scholar
  10. Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three dimensional structure. Space Sci. Rev. 89, 21. DOI. ADSCrossRefGoogle Scholar
  11. Hundhausen, A.J., Bame, S.J., Asbridge, J.R., Sydoriak, S.J.: 1970, Solar wind proton properties: Vela 3 observations from July 1965 to June 1967. J. Geophys. Res. 75, 4643. DOI. ADSCrossRefGoogle Scholar
  12. Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393. DOI. ADSCrossRefGoogle Scholar
  13. Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 87, 613. DOI. ADSCrossRefGoogle Scholar
  14. Lopez, R.E., Freeman, J.W.: 1986, Solar wind proton temperature–velocity relationship. J. Geophys. Res. 91, 1701. DOI. ADSCrossRefGoogle Scholar
  15. Matthaeus, W.H., Elliott, H.A., McComas, D.J.: 2006, Correlation of speed and temperature in the solar wind. J. Geophys. Res. 111, A10103. DOI. ADSCrossRefGoogle Scholar
  16. Ness, N.F., Hundhausen, A.J., Bame, S.J.: 1971, Observations of the interplanetary medium: Vela 3 and IMP 3, 1965–1967. J. Geophys. Res. 76, 6643. DOI. ADSCrossRefGoogle Scholar
  17. Neugebauer, M., Snyder, C.W.: 1966, Mariner 2 observations of the solar wind: 1. Average properties. J. Geophys. Res. 71, 4469. DOI. ADSCrossRefGoogle Scholar
  18. Neugebauer, M., Snyder, C.W.: 1967, Mariner 2 observations of the solar wind: 2. Relation of plasma properties to the magnetic field. J. Geophys. Res. 72, 1823. DOI. ADSCrossRefGoogle Scholar
  19. Obridko, V.N., Shelting, B.D.: 2011, Relationship between the parameters of coronal holes and high-speed solar wind streams over an activity cycle. Solar Phys. 270, 297. DOI. ADSCrossRefGoogle Scholar
  20. Parker, E.N.: 1958, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664. DOI. ADSCrossRefGoogle Scholar
  21. Parker, E.N.: 1963, Interplanetary Dynamical Processes, Interscience Publishers, New York. zbMATHGoogle Scholar
  22. Richardson, I.G., Cane, H.V.: 1995, Regions of abnormally low proton temperature in the solar wind (1965 – 1991) and their association with ejecta. J. Geophys. Res. 100, 23397. DOI. ADSCrossRefGoogle Scholar
  23. Richardson, I.G., Cane, H.V.: 2004, The fraction of interplanetary coronal mass ejections that are magnetic clouds: evidence for a solar cycle variation. Geophys. Res. Lett. 31, L18804. DOI. ADSCrossRefGoogle Scholar
  24. Richardson, I.G., Webb, D.F., Zhang, J., Berdichevsky, D.B., Biesecker, D.A., Kasper, J.C., et al.: 2006, Major geomagnetic storms (\(Dst \leq -100\ \text{nT}\)) generated by corotating interaction regions. J. Geophys. Res. 111, A07S09. DOI. CrossRefGoogle Scholar
  25. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189. DOI. ADSCrossRefGoogle Scholar
  26. Richardson, I.G., Cane, H.V.: 2012, Near-Earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963 – 2011). J. Space Weather Space Clim. 2, A02. DOI. Google Scholar
  27. Richardson, J.D., Dashevskiy, F., Paularena, K.I.: 1998, Solar wind plasma correlations between L1 and Earth. J. Geophys. Res. 103, 14619. DOI. ADSCrossRefGoogle Scholar
  28. Richardson, J.D., Paularena, K.I.: 2001, Plasma and magnetic field correlations in the solar wind. J. Geophys. Res. 106, 239. DOI. ADSCrossRefGoogle Scholar
  29. Riley, P., Schatzman, C., Cane, H.V., Richardson, I.G., Gopalswamy, N.: 2006, On the rates of coronal mass ejections: remote solar and in situ observations. Astrophys. J. 647, 648. DOI. ADSCrossRefGoogle Scholar
  30. Rotter, T., Veronig, A.M., Temmer, M., Vršnak, B.: 2012, Relation between coronal hole areas on the sun and the solar wind parameters at 1 AU. Solar Phys. 281, 793. DOI. ADSCrossRefGoogle Scholar
  31. Rotter, T., Veronig, A.M., Temmer, M., Vršnak, B.: 2015, Real-time solar wind prediction based on SDO/AIA coronal hole data. Solar Phys. 290, 1355. DOI. ADSCrossRefGoogle Scholar
  32. Russell, C.T., Siscoe, G.L., Smith, E.J.: 1980, Comparison of ISEE-1 and -3 interplanetary magnetic field observations. Geophys. Res. Lett. 7, 381. DOI. ADSCrossRefGoogle Scholar
  33. Sarabhai, V.: 1963, Some consequences of non-uniformity of solar wind velocity. J. Geophys. Res. 68, 1555. DOI. ADSCrossRefGoogle Scholar
  34. Steinitz, R., Eyni, M.: 1980, Global properties of the solar wind. I. The invariance of the momentum flux density. Astrophys. J. 241, 417. DOI. ADSCrossRefGoogle Scholar
  35. Schwenn, R., Marsch, E. (eds.): 1990, Physics of the Inner Heliosphere I. Large-Scale Phenomena, Springer, New York. Google Scholar
  36. Schwenn, R.: 2006, Solar wind sources and their variations over the solar cycle. Space Sci. Rev. 124, 51. DOI. ADSCrossRefGoogle Scholar
  37. Verbanac, G., Vršnak, B., Veronig, A., Temmer, M.: 2011a, Equatorial coronal holes, solar wind high-speed streams, and their geoeffectivness. Astron. Astrophys. 526, 20. DOI. ADSCrossRefGoogle Scholar
  38. Verbanac, G., Vršnak, B., Živković, S., Hojsak, T., Veronig, A.M., Temmer, M.: 2011b, Solar wind high-speed streams and related geomagnetic activity in the declining phase of solar Cycle 23. Astron. Astrophys. 533, 49. DOI. ADSCrossRefGoogle Scholar
  39. Vršnak, B., Temmer, M., Veronig, A.M.: 2007, Coronal holes and solar wind high-speed streams: I. Forecasting the solar wind parameters. Solar Phys. 240, 315. DOI. ADSCrossRefGoogle Scholar
  40. Wang, Y.M.: 2010, On the relative constancy of the solar wind mass flux at 1 AU. Astrophys. J. Lett. 715, L121. DOI. ADSCrossRefGoogle Scholar
  41. Wang, Y.M., Sheeley, N.R.: 2013, The solar wind and interplanetary field during very low amplitude sunspot cycles. Astrophys. J. 764, 90. DOI. ADSCrossRefGoogle Scholar
  42. Wilcox, J.M.: 1966, Solar and interplanetary magnetic fields. Science 152, 161. DOI. ADSCrossRefGoogle Scholar
  43. Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J., et al.: 2007, Correction to “solar and interplanetary sources of major geomagnetic storms (\(Dst, \leq -100\ \text{nT}\)) during 1996 – 2005. J. Geophys. Res. 112, A10102. DOI. ADSCrossRefGoogle Scholar
  44. Zirker, J.B.: 1977, Coronal holes and high-speed wind streams. Rev. Geophys. 15, 257. DOI. ADSCrossRefGoogle Scholar
  45. Zastenker, G.N., Dalin, P.A., Petrukovich, A.A., Nozdrachev, M.N., Romanov, S.A., Paularena, K.I., et al.: 2000, Solar wind structure dynamics by multipoint observations. Phys. Chem. Earth 25, 137. DOI. Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Zicai Yang
    • 1
    • 2
  • Fang Shen
    • 1
    • 2
    • 3
  • Jie Zhang
    • 4
  • Yi Yang
    • 1
    • 2
  • Xueshang Feng
    • 1
    • 3
  • Ian G. Richardson
    • 5
    • 6
  1. 1.SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science CenterChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.HIT Institute of Space Science and Applied TechnologyShenzhenChina
  4. 4.Department of Physics and AstronomyGeorge Mason UniversityFairfaxUSA
  5. 5.GPHI and Department of AstronomyUniversity of MarylandCollege ParkUSA
  6. 6.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations