Solar Physics

, 293:15 | Cite as

Automated Segmentation of High-Resolution Photospheric Images of Active Regions

  • Meng Yang
  • Yu Tian
  • Changhui Rao


Due to the development of ground-based, large-aperture solar telescopes with adaptive optics (AO) resulting in increasing resolving ability, more accurate sunspot identifications and characterizations are required. In this article, we have developed a set of automated segmentation methods for high-resolution solar photospheric images. Firstly, a local-intensity-clustering level-set method is applied to roughly separate solar granulation and sunspots. Then reinitialization-free level-set evolution is adopted to adjust the boundaries of the photospheric patch; an adaptive intensity threshold is used to discriminate between umbra and penumbra; light bridges are selected according to their regional properties from candidates produced by morphological operations. The proposed method is applied to the solar high-resolution TiO 705.7-nm images taken by the 151-element AO system and Ground-Layer Adaptive Optics prototype system at the 1-m New Vacuum Solar Telescope of the Yunnan Observatory. Experimental results show that the method achieves satisfactory robustness and efficiency with low computational cost on high-resolution images. The method could also be applied to full-disk images, and the calculated sunspot areas correlate well with the data given by the National Oceanic and Atmospheric Administration (NOAA).


Sunspots, umbra Granulation Instrumentation and data management 



This work was supported by Natural National Science Foundation of China (No. 11727805 and No. 11703029) and the Laboratory Innovation Foundation of the Chinese Academy of Sciences (Grant No. YJ16K006). We are grateful to Lei Zhu, Xuejun Rao, Lanqiang Zhang, Hua Bao, Lin Kong, Youming Guo, Libo Zhong, Xue’an Ma, Mei Li, Cheng Wang, Xiaojun Zhang, Xinlong Fan, Donghong Chen, Zhongyi Feng, Naiting Gu, Yangyi Liu of the Institute of Optics and Electronics (IOE), Chinese Academy of Sciences for their help during the solar observations. The full-disk images used in the article were kindly provided by the NASA/SDO and the HMI science team. The sunspot-area data were obtained from USAF/NOAA Sunspot Data.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Berdyugina, S., Solanki, S., Frutiger, C.: 2003, The molecular Zeeman effect and diagnostics of solar and stellar magnetic fields – II. Synthetic Stokes profiles in the Zeeman regime. Astron. Astrophys. 412, 513. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Berger, T.E., Berdyugina, S.V.: 2003, The observation of sunspot light-bridge structure and dynamics. Astrophys. J. 589, 2. DOI. ADS. CrossRefGoogle Scholar
  3. Caselles, V., Kimmel, R., Sapiro, G.: 1997, Geodesic active contours. Int. J. Comput. Vis. 22, 61. DOI. CrossRefzbMATHGoogle Scholar
  4. Chan, T., Vese, L.: 2001, Active contours without edges. IEEE Trans. Image Process. 10, 266. DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  5. Colak, T., Qahwaji, R.: 2008, Automated McIntosh-based classification of sunspot groups using MDI images. Solar Phys. 248, 277. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Colak, T., Qahwaji, R.: 2013, Prediction of Extreme Ultraviolet Variability Experiment (EVE)/ Extreme Ultraviolet Spectro-Photometer (ESP) Irradiance from Solar Dynamics Observatory (SDO)/ Atmospheric Imaging Assembly (AIA) images using fuzzy image processing and machine learning. Solar Phys. 283, 143. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Curto, J.J., Blanca, M., Martínez, E.: 2008, Automatic sunspots detection on full-disk solar images using mathematical morphology. Solar Phys. 250, 411. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Falco, M., Borrero, J.M., Guglielmino, S.L., Romano, P., Zuccarello, F., Criscuoli, S., Cristaldi, A., Ermolli, I., Jafarzadeh, S., Voort, L.R.V.D.: 2016, Kinematics and magnetic properties of a light bridge in a decaying sunspot. Solar Phys. 291, 1939. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Fonte, C.C., Fernandes, J.: 2009, Application of fuzzy sets to the determination of sunspot areas. Solar Phys. 260, 21. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Goel, S., Mathew, S.K.: 2014, Automated detection, characterization, and tracking of sunspots from SOHO/MDI continuum images. Solar Phys. 289, 1413. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Györi, L.: 1998, Automation of area measurement of sunspots. Solar Phys. 180, 109. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Kong, L., Zhu, L., Bao, H., Guo, Y., Rao, X., Zhong, L., Rao, C.: 2016, Prototype of solar ground layer adaptive optics at the 1 m New Vacuum Solar Telescope. Chin. Opt. Lett. 14, 6. DOI. ADS. Google Scholar
  13. Kong, L., Zhu, L., Zhang, L., Bao, H., Rao, C.: 2017, Real-time controller based on FPGA and DSP for solar ground layer adaptive optics prototype system at 1-m NVST. IEEE Photonics J. 9, 1. DOI. ADSGoogle Scholar
  14. Li, C., Kao, C.Y., Gore, J.C., Ding, Z.: 2008, Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17, 1940. DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. Li, C., Xu, C., Gui, C., Fox, M.D.: 2010, Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19, 3243. DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. Li, C., Huang, R., Ding, Z., Gatenby, J.C., Metaxas, D.N., Gore, J.C.: 2011, A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20, 2007. DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. Liu, Z., Xu, J., Gu, B., Wang, S., You, J., Shen, L., Lu, R., Jin, Z., Chen, L., Lou, K., Li, Z., Liu, G., Xu, Z., Rao, C., Hu, Q., Li, R., Fu, H., Wang, F., Bao, M., Wu, M., Zhang, B.: 2014, New vacuum solar telescope and observations with high resolution. Res. Astron. Astrophys. 14, 705. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Louis, R.E., Ravindra, B., Mathew, S.K., Rubio, L.R.B., Bayanna, A.R., Venkatakrishnan, P.: 2012, Analysis of a fragmenting sunspot using Hinode observations. Astrophys. J. 755, 516. DOI. ADS. CrossRefGoogle Scholar
  19. Maltby, P., Avrett, E.H., Carlsson, M., Kjeldsethmoe, O., Kurucz, R.L., Loeser, R.: 1986, A new sunspot umbral model and its variation with the solar cycle. Astrophys. J. 306, 284. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Otsu, N.: 1979, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62. DOI. CrossRefGoogle Scholar
  21. Pettauer, T., Brandt, P.N.: 1997, On novel methods to determine areas of sunspots from photoheliograms. Solar Phys. 175, 197. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Rao, C., Zhu, L., Rao, X., Guan, C., Chen, D., Lin, J., Liu, Z.: 2010a, 37-element solar adaptive optics for 26-cm solar fine structure telescope at Yunnan Astronomical Observatory. Chin. Opt. Lett. 8, 966. DOI. CrossRefGoogle Scholar
  23. Rao, C., Zhu, L., Rao, X., Guan, C., Chen, D., Chen, S., Lin, J., Liu, Z.: 2010b, Performance of the 37-element solar adaptive optics for 26-cm solar fine structure telescope at Yunnan Astronomical Observatory. Appl. Opt. 49, G129. DOI. ADS. CrossRefGoogle Scholar
  24. Rao, C., Zhu, L., Rao, X., Zhang, L., Bao, H., Kong, L., Guo, Y., Ma, X., Li, M., Wang, C., Zhang, X., Fan, X., Chen, D., Feng, Z., Wang, X., Gu, N., Wang, Z.: 2015, Second generation solar adaptive optics for 1-m New Vacuum Solar Telescope at the Fuxian Solar Observatory. Chin. Opt. Lett. 13, 120101. DOI. ADS. CrossRefGoogle Scholar
  25. Rao, C.H., Zhu, L., Rao, X.J., Zhang, L.Q., Bao, H., Ma, X.A., Gu, N.T., Guan, C.L., Chen, D.H., Wang, C.: 2016a, First generation solar adaptive optics system for 1-m New Vacuum Solar Telescope at Fuxian Solar Observatory. Res. Astron. Astrophys. 16, 19. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Rao, C., Zhu, L., Rao, X., Zhang, L., Bao, H., Kong, L., Guo, Y., Zhong, L., Ma, X., Li, M.: 2016b, Instrument description and performance evaluation of a high-order adaptive optics system for the 1 m New Vacuum Solar Telescope at Fuxian Solar Observatory. Astrophys. J. 833, 210. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Riethmueller, T.L., Solanki, S.K., Zakharov, V., Gandorfer, A.: 2008, Brightness, distribution, and evolution of sunspot umbral dots. Astron. Astrophys. 492, 233. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Schleicher, H., Balthasar, H., Wöhl, H.: 2003, Velocity field of a complex sunspot with light bridges. Solar Phys. 215, 261. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Sobotka, M.: 2003, Solar activity II: Sunspots and pores. Astron. Nachr. 324, 369. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Song, D., Chae, J., Yurchyshyn, V., Lim, E.K., Cho, K.S., Yang, H., Cho, K., Kwak, H.: 2017, Chromospheric plasma ejections in a light bridge of a sunspot. Astrophys. J. 835, 2. DOI. ADS. CrossRefGoogle Scholar
  31. Steinegger, M., Bonet, J.A., Vázquez, M.: 1997, Simulation of seeing influences on the photometric determination of sunspot areas. Solar Phys. 171, 303. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Turmon, M., Pap, J.M., Mukhtar, S.: 2002, Statistical pattern recognition for labeling solar active regions: Application to SOHO/MDI imagery. Astrophys. J. 568, 396. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Watson, F., Fletcher, L., Dalla, S., Marshall, S.: 2009, Modelling the longitudinal asymmetry in sunspot emergence: The role of the Wilson depression. Solar Phys. 260, 5. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Zhang, K., Zhang, L., Song, H., Zhang, D.: 2013, Reinitialization-free level set evolution via reaction diffusion. IEEE Trans. Image Process. 22, 258. DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. Zhao, C., Lin, G.H., Deng, Y.Y., Yang, X.: 2016, Automatic recognition of sunspots in HSOS full-disk solar images. Publ. Astron. Soc. Aust. 33, 1. DOI. ADS. CrossRefGoogle Scholar
  36. Zharkov, S., Zharkova, V., Ipson, S., Benkhalil, A.: 2005, Technique for automated recognition of sunspots on full-disk solar images. EURASIP J. Appl. Signal Process. 15, 2573. DOI. ADS. zbMATHGoogle Scholar
  37. Zharkova, V., Aboudarham, J., Zharkov, S., Ipson, S., Benkhalil, A., Fuller, N.: 2005, Solar feature catalogues in EGSO. Solar Phys. 228, 361. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory on Adaptive OpticsChinese Academy of SciencesChengduChina
  2. 2.Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations