Solar Physics

, 293:10 | Cite as

On the Statistical Properties of Turbulent Energy Transfer Rate in the Inner Heliosphere

  • Luca Sorriso-Valvo
  • Francesco Carbone
  • Silvia Perri
  • Antonella Greco
  • Raffaele Marino
  • Roberto Bruno


The transfer of energy from large to small scales in solar wind turbulence is an important ingredient of the long-standing question of the mechanism of the interplanetary plasma heating. Previous studies have shown that magnetohydrodynamic (MHD) turbulence is statistically compatible with the observed solar wind heating as it expands in the heliosphere. However, in order to understand which processes contribute to the plasma heating, it is necessary to have a local description of the energy flux across scales. To this aim, it is customary to use indicators such as the magnetic field partial variance of increments (PVI), which is associated with the local, relative, scale-dependent magnetic energy. A more complete evaluation of the energy transfer should also include other terms, related to velocity and cross-helicity. This is achieved here by introducing a proxy for the local, scale-dependent turbulent energy transfer rate \(\epsilon_{\Delta t}(t)\), based on the third-order moment scaling law for MHD turbulence. Data from Helios 2 are used to determine the statistical properties of such a proxy in comparison with the magnetic and velocity fields PVI, and the correlation with local solar wind heating is computed. PVI and \(\epsilon_{\Delta t}(t)\) are generally well correlated; however, \(\epsilon_{\Delta t}(t)\) is a very sensitive proxy that can exhibit large amplitude values, both positive and negative, even for low amplitude peaks in the PVI. Furthermore, \(\epsilon_{\Delta t}(t)\) is very well correlated with local increases of the temperature when large amplitude bursts of energy transfer are localized, thus suggesting an important role played by this proxy in the study of plasma energy dissipation.


Solar wind Turbulence Intermittency 



SP acknowledges support by the Agenzia Spaziale Italiana under the contract ASI-INAF 2015-039-R.O “Missione M4 di ESA: Partecipazione Italiana alla fase di assessment della missione THOR”. RM acknowledges financial support from the program PALSE (Programme Avenir Lyon Saint-Etienne) of the University of Lyon, in the frame of the program Investissements d’Avenir (No. ANR-11-IDEX-0007). The authors declare they have no conflict of interest arising from the above funding.


  1. Alexandrova, O., Chen, C.H.K., Sorriso-Valvo, L., Horbury, T.S., Bale, S.D.: 2013, Space Sci. Rev. 178, 101. DOI. ADSCrossRefGoogle Scholar
  2. Banerjee, S., Galtier, S.: 2013, Phys. Rev. E 87, 013019. DOI. ADSCrossRefGoogle Scholar
  3. Banerjee, S., Hadid, L.Z., Sahraoui, F., Galtier, S.: 2016, Astrophys. J. Lett. 829, L27. DOI. ADSCrossRefGoogle Scholar
  4. Bavassano, B., Dobrowolny, M., Fanfoni, G., Mariani, F., Ness, N.F.: 1982, Solar Phys. 78, 373. DOI. ADSCrossRefGoogle Scholar
  5. Biskamp, D.: 1997, Nonlinear Magnetohydrodynamics, Cambridge University Press, Cambridge. Google Scholar
  6. Bruno, R., Carbone, V.: 2013, Living Rev. Solar Phys. 10, 2. DOI. ADSCrossRefGoogle Scholar
  7. Bruno, R., Carbone, V., Veltri, P., Pietropaolo, E., Bavassano, B.: 2001, Planet. Space Sci. 49, 1201. DOI. ADSCrossRefGoogle Scholar
  8. Bruno, R., Carbone, V., Vörös, Z., D’Amicis, R., Bavassano, B., Cattaneo, M.B., Mura, A., Milillo, A., Orsini, S., Veltri, P., Sorriso-Valvo, L., Zhang, T., Biernat, H., Rucker, H., Baumjohann, W., Jankovičová, D., Kovács, P.: 2009, Earth Moon Planets 104, 101. DOI. ADSCrossRefGoogle Scholar
  9. Burch, J.L., Moore, T.E., Torbert, R.B., Giles, B.L.: 2016, Space Sci. Rev. 199, 5. DOI. ADSCrossRefGoogle Scholar
  10. Burlaga, L.F.: 1992, J. Geophys. Res. 97, 4283. DOI. ADSCrossRefGoogle Scholar
  11. Carbone, V., Marino, R., Sorriso-Valvo, L., Noullez, A., Bruno, R.: 2009, Phys. Rev. Lett. 103, 061102. DOI. ADSCrossRefGoogle Scholar
  12. Chasapis, A., Retinò, A., Sahraoui, F., Vaivads, A., Khotyaintsev, Yu.V., Sundkvist, D., Greco, A., Sorriso-Valvo, L., Canu, P.: 2015, Astrophys. J. Lett. 804, L1. DOI. ADSCrossRefGoogle Scholar
  13. Chen, C.H.K.: 2016, J. Plasma Phys. 82, 535820602. DOI. CrossRefGoogle Scholar
  14. Coburn, J.T., Smith, C.W., Vasquez, B.J., Stawarz, J.E., Forman, M.A.: 2012, Astrophys. J. 754, 93. DOI. ADSCrossRefGoogle Scholar
  15. Fox, N.J., Velli, M.C., Bale, S.D., Decker, R., Driesman, A., Howard, R.A., Kasper, J.C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M.K., McComas, D.J., Raouafi, N.E., Szabo, A.: 2016, Space Sci. Rev. 204, 7. DOI. ADSCrossRefGoogle Scholar
  16. Freeman, J.W., Totten, T., Arya, S.: 1992, A determination of the polytropic index of the free streaming solar wind using improved temperature and density radial power-law indices. Eos Trans. AGU 73, 238. Google Scholar
  17. Frisch, U.: 1995, Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge. zbMATHGoogle Scholar
  18. Frisch, U., Parisi, G.: 1983, In: Ghil, M., Benzi, R., Parisi, G. (eds.) Turbulence and Predictability of Geophysical Flows and Climate Dynamics 84, North-Holland, Amsterdam. Google Scholar
  19. Frisch, U., Sornette, D.: 1997, J. Phys. I 7, 1155. DOI. Google Scholar
  20. Galtier, S.: 2008, Phys. Rev. E 77, 015302(R). DOI. ADSCrossRefGoogle Scholar
  21. Gogoberidze, G., Perri, S., Carbone, V.: 2013, Astrophys. J. 769, 111. DOI. ADSCrossRefGoogle Scholar
  22. Goldstein, B.E., Neugebauer, M., Phillips, J.L., Bame, S., Gosling, J.T., McComas, D., Wang, Y.-M., Sheeley, N.R., Suess, S.T.: 1996, Astron. Astrophys. 316, 296. ADSGoogle Scholar
  23. Grassberger, P., Procaccia, I.: 1983, Phys. Rev. Lett. 50, 346. DOI. ADSMathSciNetCrossRefGoogle Scholar
  24. Greco, A., Perri, S.: 2014, Astrophys. J. 784, 163. DOI. ADSCrossRefGoogle Scholar
  25. Greco, A., Matthaeus, W.H., Servidio, S., Dmitruk, P.: 2009, Phys. Rev. E 80, 046401. DOI. ADSCrossRefGoogle Scholar
  26. Hadid, L.Z., Sahraoui, F., Galtier, S.: 2017, Astrophys. J. 838, 9. DOI. ADSCrossRefGoogle Scholar
  27. Hellinger, P., Trávníček, P.M., Štverák, Š., Matteini, L., Velli, M.: 2013, J. Geophys. Res. 118, 1351. DOI. CrossRefGoogle Scholar
  28. Horbury, T.S., Balogh, A., Forsyth, R.J., Smith, E.J.: 1997, Adv. Space Res. 19, 847. DOI. ADSCrossRefGoogle Scholar
  29. Kolmogorov, A.N.: 1941, Dokl. Akad. Nauk SSSR 30, 301. ADSGoogle Scholar
  30. Leamon, R.J., Matthaeus, W.H., Smith, C.W., Zank, G.P., Mullan, D.J., Oughton, S.: 2000, Astrophys. J. 537, 1054. DOI. ADSCrossRefGoogle Scholar
  31. MacBride, B.T., Forman, M.A., Smith, C.W.: 2005, In: Fleck, B., Zurbuchen, T.H., Lacoste, H. (eds.) Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere, ESA Special Publication 592. 613. Google Scholar
  32. MacBride, B.T., Smith, C.W., Forman, M.A.: 2008, Astrophys. J. 679, 1644. DOI. ADSCrossRefGoogle Scholar
  33. Macek, W.M.: 2006, Space Sci. Rev. 122, 329. DOI. ADSCrossRefGoogle Scholar
  34. Macek, W.M., Wawrzaszek, A., Carbone, V.: 2011, Geophys. Res. Lett. 38, L19103. DOI. ADSCrossRefGoogle Scholar
  35. Marino, R., Sorriso-Valvo, L., Carbone, V., Noullez, A., Bruno, B., Bavassano, B.: 2008, Astrophys. J. 677, L71. DOI. ADSCrossRefGoogle Scholar
  36. Marino, R., Sorriso-Valvo, L., Carbone, V., Veltri, P., Noullez, A., Bruno, R.: 2011, Planet. Space Sci. 59, 592. DOI. ADSCrossRefGoogle Scholar
  37. Marino, R., Sorriso-Valvo, L., D’Amicis, R., Carbone, V., Bruno, R., Veltri, P.: 2012, Astrophys. J. 750, 41. DOI. ADSCrossRefGoogle Scholar
  38. Marsch, E., Tu, C.: 1997, Nonlinear Process. Geophys. 4, 101. DOI. ADSCrossRefGoogle Scholar
  39. Matthaeus, W.H., Dasso, S., Weygand, J.M., Milano, L.J., Smith, C.W., Kivelson, M.J.: 2005, Phys. Rev. Lett. 95, 231101. DOI. ADSCrossRefGoogle Scholar
  40. Matthaeus, W.H., Oughton, S., Pontius, D.H. Jr., Zhou, Y.: 1994, J. Geophys. Res. 99, 19267. DOI. ADSCrossRefGoogle Scholar
  41. Meneveau, C., Sreenivasan, K.R.: 1987, Phys. Rev. Lett. 59, 1424. DOI. ADSCrossRefGoogle Scholar
  42. Müller, D., Marsden, R.G., St. Cyr, D.C., Gilbert, H.R.: 2013, Solar Phys. 285, 27. DOI. CrossRefGoogle Scholar
  43. Osman, K.T., Wan, M., Matthaeus, W.H., Weygand, J.M., Dasso, S.: 2011, Phys. Rev. Lett. 107, 165001. DOI. ADSCrossRefGoogle Scholar
  44. Osman, K.T., Matthaeus, W.H., Wan, M., Rappazzo, A.F.: 2012, Phys. Rev. Lett. 108, 261102. DOI. ADSCrossRefGoogle Scholar
  45. Paladin, G., Vulpiani, A.: 1987, Phys. Rep. 156, 147. DOI. ADSMathSciNetCrossRefGoogle Scholar
  46. Perri, S., Servidio, S., Vaivads, A., Valentini, F.: 2017, Astrophys. J., Suppl. Ser. 231, 4. DOI. ADSCrossRefGoogle Scholar
  47. Politano, H., Pouquet, A.: 1998, Geophys. Res. Lett. 25, 273. DOI. ADSCrossRefGoogle Scholar
  48. Richardson, J.D., Paularena, K.I., Lazarus, A.J., Belcher, J.W.: 1995, Geophys. Res. Lett. 22, 325. DOI. ADSCrossRefGoogle Scholar
  49. Servidio, S., Valentini, F., Califano, F., Veltri, P.: 2012, Phys. Rev. Lett. 108, 045001. DOI. ADSCrossRefGoogle Scholar
  50. Schwenn, R.: 1983 In: Solar Wind Five, NASA Conf. Publ., United States, CP-2280, 489. Google Scholar
  51. Smith, C.W., Stawarz, J.E., Vasquez, B.J., Forman, M.A., MacBride, B.T.: 2009, Phys. Rev. Lett. 103, 201101. DOI. ADSCrossRefGoogle Scholar
  52. Sorriso-Valvo, L., Yordanova, E., Carbone, V.: 2010, Europhys. Lett. 90, 59001. DOI. ADSCrossRefGoogle Scholar
  53. Sorriso-Valvo, L., Carbone, V., Bruno, R., Veltri, P.: 2006, Europhys. Lett. 75, 832. DOI. ADSCrossRefGoogle Scholar
  54. Sorriso-Valvo, L., Carbone, F., Leonardis, E., Chen, C.H.K., Šafránková, J., Němeček, Z.: 2017, Adv. Space Res. 59, 1642. DOI. ADSCrossRefGoogle Scholar
  55. Sorriso-Valvo, L., Carbone, V., Noullez, A., Politano, H., Pouquet, A., Veltri, P.: 2002, Phys. Plasmas 9, 89. DOI. ADSMathSciNetCrossRefGoogle Scholar
  56. Sorriso-Valvo, L., Marino, R., Carbone, V., Noullez, A., Lepreti, F., Veltri, P., Bruno, R., Bavassano, B., Pietropaolo, P.: 2007, Phys. Rev. Lett. 99, 115001. DOI. ADSCrossRefGoogle Scholar
  57. Sorriso-Valvo, L., Marino, R., Lijoi, L., Perri, S., Carbone, V.: 2015, Astrophys. J. 807, 86. DOI. ADSCrossRefGoogle Scholar
  58. Stawarz, J.E., Vasquez, B.J., Smith, C.W., Forman, M.A., Klewicki, J.: 2011, Astrophys. J. 736, 44. DOI. ADSCrossRefGoogle Scholar
  59. Taylor, G.I.: 1938, Proc. Roy. Soc. London Ser. A, Math. Phys. Sci. 164(919), 476. ADSCrossRefGoogle Scholar
  60. Tessein, J.A., Matthaeus, W.H., Wan, M., Osman, K.T., Ruffolo, D., Giacalone, J.: 2013, Astrophys. J. Lett. 776, L8. DOI. ADSCrossRefGoogle Scholar
  61. Tu, C., Marsch, E.: 1995, Space Sci. Rev. 73, 1. DOI. ADSCrossRefGoogle Scholar
  62. Vaivads, A., et al.: 2016, J. Plasma Phys. 82, 905820501. DOI. CrossRefGoogle Scholar
  63. Veltri, P., Mangeney, A.: 1999, In: Habbai, S.R., Hesser, R., Hollweg, J.V., Isenberg, P.A. (eds.) Solar Wind Nine, The American Institute of Physics, College Park, 543. Google Scholar
  64. Weygand, J.M., Matthaeus, W.H., Dasso, S., Kivelson, M.G., Walker, R.J.: 2007, J. Geophys. Res. 112, A10201. DOI. ADSCrossRefGoogle Scholar
  65. Zhdankin, V., Boldyrev, S., Chen, C.H.K.: 2016, Mon. Not. Roy. Astron. Soc. 457, L69. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nanotec – UOS di CosenzaCNRRendeItaly
  2. 2.IIA – U.O.S. di CosenzaCNRRendeItaly
  3. 3.Dipartimento di FisicaUniversità della CalabriaRende (CS)Italy
  4. 4.Laboratoire de Mécanique des Fluides et d’Acoustique, École Centrale de LyonCNRS – Université de LyonÉcullyFrance
  5. 5.IAPS-INAFRomaItaly

Personalised recommendations