Solar Physics

, 292:186 | Cite as

Two Practical Methods for Coronal Intensity Determination

  • Hikmet ÇakmakEmail author


Determining the relative brightness of the solar corona is one of the most critical stages in solar eclipse studies. For this purpose, images taken with different exposures and polarization angles in white-light observations are used. The composite image of each polarization angle is produced by combining the images of different exposures. With the help of the intensity calibration function of these images, the relative intensity of the corona can be calculated. The total brightness of the solar corona is calculated using Stokes parameters obtained from intensity values of three polarization angles. In this study, two methods are presented: the first is used to obtain the intensity calibration function of the photographic material using calibration images, and the second is used to calculate the combined intensity values of images taken with different polarization angles.


Eclipse observations Corona, active Brightness, polarization 



Thanks to Başar Coşkunoğlu for his contributions for improving the language of the manuscript. Thanks especially to M. Türker Özkan and Adnan Ökten and all other staff in charge of the observations of the 1999 and 2006 solar eclipses. Thanks also to the anonymous referee for their valuable suggestions and comments that improved the manuscript. This work was supported by the Istanbul University Scientific Research Projects Commission with the project numbers 24242, UP-16/160399, and 470/27122005.

Disclosure of Potential Conflicts of Interest

The author declares that he has no conflicts of interest.


  1. Arech, A.V., Mesadi, T., Koshel, R.J.: 2007, Field Guide to Illumination, SPIE Field Guides 11, SPIE, Bellingham. CrossRefGoogle Scholar
  2. Billings, D.E.: 1966, A Guide to the Solar Corona, Academic Press, New York. Google Scholar
  3. Dürst, J.: 1982, Astron. Astrophys. 112, 241. Google Scholar
  4. Fontenla, J.M., Avrett, E.H., Loeser, R.: 1993, Astrophys. J. 406, 319.  DOI. ADSCrossRefGoogle Scholar
  5. Gabriel, A.H.: 1976, Phil. Trans. Roy. Soc. London A 281, 399.  DOI. CrossRefGoogle Scholar
  6. Goldstein, D.: 2003, Polarized Light, 2nd edn. Dekker, New York. Google Scholar
  7. Golub, L., Pasachoff, J.M.: 2010, The Solar Corona, 2nd edn. Cambridge University Press, Cambridge. Google Scholar
  8. Hurter, F., Driffield, V.C.: 1890, J. Soc. Chem. Ind., London IX, 5. Google Scholar
  9. Kulijanishvili, V.I., Kapanadze, N.G.: 2005, Solar Phys. 229, 45.  DOI. ADSCrossRefGoogle Scholar
  10. McCluney, W.R.: 1994, Introduction to Radiometry and Photometry, Artech House, Norwood. Google Scholar
  11. Mees, C.E.K.: 1942, The Theory of the Photographic Process, Macmillan Co., New York. Google Scholar
  12. Newkirk, G., Dupree, R.G., Schmahl, E.J.: 1970, Solar Phys. 15, 15.  DOI. ADSCrossRefGoogle Scholar
  13. Owaki, N., Saito, K.: 1967, Ann. Tokyo Astron. Obs. 19, 279. ADS. Google Scholar
  14. Ramberg, K.: 1951, Stockh. Obs. Ann. 16(3), 3. ADS. ADSGoogle Scholar
  15. Saito, K.: 1948, Ann. Tokyo Astron. Obs. 8, 63. ADS. Google Scholar
  16. Saito, K.: 1956, Publ. Astron. Soc. Japan 8(3/4), 126. ADS. ADSGoogle Scholar
  17. Saito, K.: 1970, Ann. Tokyo Astron. Obs. 13(2), 53. ADS. ADSGoogle Scholar
  18. Saito, K., Hata, S.: 1964, Publ. Astron. Soc. Japan 16(3), 240. ADS. ADSGoogle Scholar
  19. van de Hulst, H.C.: 1950, Bull. Astron. Inst. Neth. 11, 135. ADS. ADSGoogle Scholar
  20. von Klüber, H.: 1958, Mon. Not. Roy. Astron. Soc. 118, 201.  DOI. CrossRefGoogle Scholar
  21. Waldmeier, M.: 1964, Z. Astrophys. 60, 28. ADS. ADSGoogle Scholar
  22. Young, R.K.: 1911, Lick Obs. Bull. 6(205), 166.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Astronomy and Space Science, Faculty of ScienceIstanbul UniversityBeyazıt/IstanbulTurkey

Personalised recommendations