Solar Physics

, 292:181 | Cite as

Prediction of the Length of Upcoming Solar Cycles

Article

Abstract

The forecast of solar cycle (SC) characteristics is crucial particularly for several space-based missions. In the present study, we propose a new model for predicting the length of the SC. The model uses the information of the width of an autocorrelation function that is derived from the daily sunspot data for each SC. We tested the model on Versions 1 and 2 of the daily international sunspot number data for SCs 10 – 24. We found that the autocorrelation width \(A_{\mathrm{w}} ^{n}\) of SC \(n\) during the second half of its ascending phase correlates well with the modified length that is defined as \(T_{\mathrm{cy}}^{n+2} - T_{\mathrm{a}}^{n}\). Here \(T_{\mathrm{cy}}^{n+2}\) and \(T_{ \mathrm{a}}^{n}\) are the length and ascent time of SCs \(n+2\) and \(n\), respectively. The estimated correlation coefficient between the model parameters is 0.93 (0.91) for Version 1 (Version 2) sunspot series. The standard errors in the observed and predicted lengths of the SCs for Version 1 and Version 2 data are 0.38 and 0.44 years, respectively. The advantage of the proposed model is that the predictions of the length of the upcoming two SCs (i.e., \(n+1\), \(n+2\)) are readily available at the time of the peak of SC \(n\). The present model gives a forecast of 11.01, 10.52, and 11.91 years (11.01, 12.20, and 11.68 years) for the length of SCs 24, 25, and 26, respectively, for Version 1 (Version 2).

Keywords

Solar cycle Sunspots Models 

Notes

Acknowledgements

We thank the SIDC and SILSO teams for the daily and monthly international sunspot data. The revisions of the manuscript were carried out at the Research Institute of Sustainable Humanosphere, Kyoto University, Japan.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Aini Kambry, M., Nishikawa, J.: 1990, Solar differential rotation derived from sunspot observations. Solar Phys. 126(1), 89.  DOI. ADSCrossRefGoogle Scholar
  2. Böhm-Vitense, E.: 2007, Chromospheric activity in G and K main-sequence stars, and what it tells us about stellar dynamos. Astrophys. J. 657, 486.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Clette, F., Svalgaard, L., Vaquero, J.M., Cliver, E.W.: 2015, In: Balogh, A., Hudson, H., Petrovay, K., von Steiger, R. (eds.) Revisiting the Sunspot Number, Springer, New York, 35.  DOI. Google Scholar
  4. Clette, F., Cliver, E.W., Lefèvre, L., Svalgaard, L., Vaquero, J.M., Leibacher, J.W.: 2016a, Preface to topical issue: Recalibration of the sunspot number. Solar Phys. 291(9), 2479.  DOI. ADSCrossRefGoogle Scholar
  5. Clette, F., Lefèvre, L., Cagnotti, M., Cortesi, S., Bulling, A.: 2016b, The revised Brussels–Locarno sunspot number (1981 – 2015). Solar Phys. 291(9), 2733.  DOI. ADSCrossRefGoogle Scholar
  6. de Toma, G., Gibson, S., Emery, B., Arge, C.: 2010, The minimum between cycle 23 and 24: Is sunspot number the whole story? In: SOHO-23: Understanding a Peculiar Solar Minimum 428, 217. ADS. Google Scholar
  7. Dikpati, M., Gilman, P.A.: 2008, Global solar dynamo models: Simulations and predictions. J. Astrophys. Astron. 29(1-2), 29.  DOI. ADSCrossRefGoogle Scholar
  8. Emmert, J., Lean, J., Picone, J.: 2010, Record-low thermospheric density during the 2008 solar minimum. Geophys. Res. Lett. 37(12), L12102.  DOI. ADSCrossRefGoogle Scholar
  9. Ermolli, I., Matthes, K., Dudok de Wit, T., Krivova, N.A., Tourpali, K., Weber, M., Unruh, Y.C., Gray, L., Langematz, U., Pilewskie, P., et al.: 2013, Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. 13(8), 3945.  DOI. ADSCrossRefGoogle Scholar
  10. Feynman, J.: 1982, Geomagnetic and solar wind cycles, 1900 – 1975. J. Geophys. Res. 87(A8), 6153.  DOI. ADSCrossRefGoogle Scholar
  11. Gilmore, M., Yu, C.X., Rhodes, T.L., Peebles, W.A.: 2002, Investigation of rescaled range analysis, the hurst exponent, and long-time correlations in plasma turbulence. Phys. Plasmas 9(4), 1312.  DOI. ADSCrossRefGoogle Scholar
  12. Gkana, A., Zachilas, L.: 2016, Re-evaluation of predictive models in light of new data: Sunspot number version 2.0. Solar Phys. 291, 2457.  DOI. ADSCrossRefGoogle Scholar
  13. Hajra, R., Tsurutani, B.T., Echer, E., Gonzalez, W.D.: 2014, Relativistic electron acceleration during high-intensity, long-duration, continuous ae activity (hildcaa) events: Solar cycle phase dependences. Geophys. Res. Lett. 41(6), 1876.  DOI. ADSCrossRefGoogle Scholar
  14. Hao, Y., Shi, H., Xiao, Z., Zhang, D.: 2014, Weak ionization of the global ionosphere in solar cycle 24. In: Ann. Geophys. 32, 809.  DOI. Google Scholar
  15. Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7(1), 1.  DOI. ADSCrossRefGoogle Scholar
  16. Hathaway, D.H., Wilson, R.M.: 2006, Geomagnetic activity indicates large amplitude for sunspot cycle 24. Geophys. Res. Lett. 33(18), L18101.  DOI. ADSCrossRefGoogle Scholar
  17. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Group sunspot numbers: Sunspot cycle characteristics. Solar Phys. 211(1), 357.  DOI. ADSCrossRefGoogle Scholar
  18. Kakad, B.: 2011, A new method for prediction of peak sunspot number and ascent time of the solar cycle. Solar Phys. 270(1), 393.  DOI. ADSCrossRefGoogle Scholar
  19. Kakad, B., Kakad, A., Ramesh, D.S.: 2015, A new method for forecasting the solar cycle descent time. J. Space Weather Space Clim. 5, A29.  DOI. ADS. CrossRefGoogle Scholar
  20. Kakad, B., Kakad, A., Ramesh, D.S.: 2017, Shannon entropy-based prediction of solar cycle 25. Solar Phys. 292, 95.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Kane, R.P.: 2008, Prediction of solar cycle maximum using solar cycle lengths. Solar Phys. 248(1), 203.  DOI. ADSCrossRefGoogle Scholar
  22. Kilcik, A., Anderson, C.N.K., Rozelot, J.P., Ye, H., Sugihara, G., Ozguc, A.: 2009, Nonlinear prediction of solar cycle 24. Astrophys. J. 693(2), 1173.  DOI. ADSCrossRefGoogle Scholar
  23. McComas, D., Ebert, R., Elliott, H., Goldstein, B., Gosling, J., Schwadron, N., Skoug, R.: 2008, Weaker solar wind from the polar coronal holes and the whole sun. Geophys. Res. Lett. 35(18), L18103.  DOI. ADSCrossRefGoogle Scholar
  24. McIntosh, S.W., Wang, X., Leamon, R.J., Davey, A.R., Howe, R., Krista, L.D., Malanushenko, A.V., Markel, R.S., Cirtain, J.W., Gurman, J.B., Pesnell, W.D., Thompson, M.J.: 2014, Deciphering solar magnetic activity, I: On the relationship between the sunspot cycle and the evolution of small magnetic features. Astrophys. J. 792(1), 12.  DOI. ADSCrossRefGoogle Scholar
  25. Muñoz-Jaramillo, A., Dasi-Espuig, M., Balmaceda, L.A., DeLuca, E.E.: 2013, Solar cycle propagation, memory, and prediction: insights from a century of magnetic proxies. Astrophys. J. Lett. 767(2), L25.  DOI. ADSCrossRefGoogle Scholar
  26. Noyes, R.W.: 1982, The Sun, Our Star. ADS. CrossRefGoogle Scholar
  27. Ohl, A.: 1966, Wolf’s number prediction for the maximum of the cycle 20. Soln. Dannye 12, 84. Google Scholar
  28. Oliver, R., Ballester, J.L.: 1996, Rescaled range analysis of the asymmetry of solar activity. Solar Phys. 169(1), 215.  DOI. ADSCrossRefGoogle Scholar
  29. Pesnell, W.D.: 2008, Predictions of solar cycle 24. Solar Phys. 252(1), 209.  DOI. ADSCrossRefGoogle Scholar
  30. Pesnell, W.D.: 2016, Predictions of solar cycle 24: How are we doing? Space Weather 14(1), 10.  DOI. ADSCrossRefGoogle Scholar
  31. Ruzmaikin, A., Feynman, J., Robinson, P.: 1994, Long-term persistence of solar activity. Solar Phys. 152(1), 313.  DOI. ADSCrossRefGoogle Scholar
  32. Solomon, S.C., Qian, L., Burns, A.G.: 2013, The anomalous ionosphere between solar cycles 23 and 24. J. Geophys. Res. 118(10), 6524.  DOI. CrossRefGoogle Scholar
  33. Spence, P., Walker, E.N., Halls, B., Roberton, L.: 1993, Periodicities in the relative sunspot number during sunspot maximum of solar cycle 22. J. Br. Astron. Assoc. 103, 115. ADS. ADSGoogle Scholar
  34. Svalgaard, L., Kamide, Y.: 2012, Asymmetric solar polar field reversals. Astrophys. J. 763(1), 23.  DOI. ADSCrossRefGoogle Scholar
  35. Thompson, R.: 1993, A technique for predicting the amplitude of the solar cycle. Solar Phys. 148(2), 383.  DOI. ADSCrossRefGoogle Scholar
  36. Usoskin, I.G., Solanki, S., Kovaltsov, G.: 2011, Grand minima of solar activity during the last millennia. Proc. Int. Astron. Union 7(S286), 372.  DOI. CrossRefGoogle Scholar
  37. Waldmeier, M.: 1935. Astron. Mitt. (Zür.) 14, 105. ADSGoogle Scholar
  38. Waldmeier, M.: 1939. Astron. Mitt. (Zür.) 14, 439. ADSGoogle Scholar
  39. Wilson, R.M.: 1990, On the level of skill in predicting maximum sunspot number: A comparative study of single variate and bivariate precursor techniques. Solar Phys. 125(1), 143.  DOI. ADSCrossRefGoogle Scholar
  40. Zachilas, L., Gkana, A.: 2015, On the verge of a grand solar minimum: A second Maunder minimum? Solar Phys. 290(5), 1457.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Bharati Kakad
    • 1
    • 2
  • Amar Kakad
    • 1
  • Durbha Sai Ramesh
    • 1
  1. 1.Indian Institute of GeomagnetismNavi MumbaiIndia
  2. 2.Research Institute for Sustainable HumanosphereKyoto UniversityUji, KyotoJapan

Personalised recommendations