Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta


This work is a continuation of our previous article (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015), which describes the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). As in the previous article, we use the data of the OMNI database, our catalog of large-scale solar-wind phenomena during 1976 – 2000 (Yermolaev et al. in Cosmic Res., 47, 2, 81, 2009) and the method of double superposed epoch analysis (Yermolaev et al. in Ann. Geophys., 28, 2177, 2010a). We rescale the duration of all types of structures in such a way that the beginnings and endings for all of them coincide. We present new detailed results comparing pair phenomena: 1) both types of compression regions (i.e. CIRs vs. sheaths) and 2) both types of ICMEs (MCs vs. ejecta). The obtained data allow us to suggest that the formation of the two types of compression regions responds to the same physical mechanism, regardless of the type of piston (high-speed stream (HSS) or ICME); the differences are connected to the geometry (i.e. the angle between the speed gradient in front of the piston and the satellite trajectory) and the jumps in speed at the edges of the compression regions. In our opinion, one of the possible reasons behind the observed differences in the parameters in MCs and ejecta is that when ejecta are observed, the satellite passes farther from the nose of the area of ICME than when MCs are observed.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4


  1. Akasofu, S.-I.: 1981, Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 111, A07S08. DOI .

  2. Bendat, J.S., Piersol, A.G.: 1971, Measurement and Analysis of Random Data, Wiley–Interscience, New York.

  3. Berdichevsky, D.B., Szabo, A., Lepping, R.P., Viñas, A.F., Mariani, F.: 2000, Interplanetary fast shocks and associated drivers observed through the 23rd solar minimum by wind over its first 2.5 years. J. Geophys. Res. 105, 27289. DOI .

  4. Borovsky, J.E., Denton, M.H.: 2010, Solar wind turbulence and shear: A superposed-epoch analysis of corotating interaction regions at 1 AU. J. Geophys. Res. 115, A10101. DOI .

  5. Burton, R.K., McPherron, R.L., Russell, C.T.: 1975, An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 80, 4204. DOI .

  6. Cid, C., Palacios, J., Saiz, E., Guerrero, A., Cerrato, Y.: 2014, On extreme geomagnetic storms. J. Space Weather Space Clim. 4, A28. DOI .

  7. Dryer, M.: 1994, Interplanetary studies: Propagation of disturbances between the Sun and the magnetosphere. Space Sci. Rev. 67(3), 363. DOI .

  8. Gonzalez, W.D., Tsurutani, B.T., Clua de Gonzalez, A.L.: 1999, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88, 529. DOI .

  9. Gopalswamy, N., Tsurutani, B., Yan, Y.: 2015, Short-term variability of the Sun–Earth system: an overview of progress made during the CAWSES-II period. Prog. Earth Planet. Sci. 2, 13. DOI .

  10. Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Makela, P.: 2016, Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24. J. Geophys. Res., Space Phys. 120, 9221. DOI .

  11. Hietala, H., Kilpua, E.K.J., Turner, D.L., Angelopoulos, V.: 2014, Depleting effects of ICME-driven sheath regions on the outer electron radiation belt. Geophys. Res. Lett. 41, 2258. DOI .

  12. Huttunen, K.E.J., Koskinen, H.E.J.: 2004, Importance of postshock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity. Ann. Geophys. 22, 1729. DOI .

  13. Jian, L.K., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393. DOI .

  14. Jian, L.K., Russell, C.T., Luhmann, J.G., Skoug, R.M., Steinberg, J.T.: 2008, Stream interactions and interplanetary coronal mass ejections at 0.72 AU. Solar Phys. 249, 85. DOI .

  15. Katus, R.M., Liemohn, M.W., Ionides, E.L., Ilie, R., Welling, D., Sarno-Smith, L.K.: 2015, Statistical analysis of the geomagnetic response to different solar wind drivers and the dependence on storm intensity. J. Geophys. Res. Space Physics 120(11), 9221. DOI .

  16. King, J.H., Papitashvili, N.E.: 2004, Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data. J. Geophys. Res. 110(A2), A02209. DOI .

  17. Kilpua, E.K.J., Hietala, H., Turner, D.L., Koskinen, H.E.J., Pulkkinen, T.I., Rodriguez, J.V., Reeves, G.D., Claudepierre, S.G., Spence, H.E.: 2015, Unraveling the drivers of the storm time radiation belt response. Geophys. Res. Lett. 42, 3076. DOI .

  18. Lepping, R.P., Berdichevsky, D.B., Szabo, A., Arqueros, C., Lazarus, A.J.: 2003, Profile of an average magnetic cloud at 1 AU for the quiet solar phase: WIND observations. Solar Phys. 212, 425. DOI .

  19. Lepping, R.P., Berdichevsky, D.B., Wu, C.-C.: 2017, Average magnetic field magnitude profiles of wind magnetic clouds as a function of closest approach to the clouds’ axes and comparison to model. Solar Phys. 292, 27. DOI .

  20. Lopez, R.E.: 1987, Solar cycle invariance in solar wind proton temperature relationships. J. Geophys. Res. 92(11), 189. 194. DOI .

  21. Mitsakou, E., Moussas, X.: 2014, Statistical study of ICMEs and their sheaths during solar cycle 23 (1996 – 2008). Solar Phys. 289, 3137. DOI .

  22. Richardson, I.G., Cane, H.V.: 1995, Regions of abnormally low proton temperature in the solar wind (1965 – 1991) and their association with ejecta. J. Geophys. Res. 100(A12), 23397. DOI .

  23. Richardson, I.G., Cane, H.V.: 2012, Near-Earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963 – 2011). J. Space Weather Space Clim. 2, A02. DOI .

  24. Russell, C.T., McPherron, R.L., Burton, R.K.: 1974, On the cause of magnetic storms. J. Geophys. Res. 79, 1105. DOI .

  25. Thatcher, L.J., Müller, H.-R.: 2011, Statistical investigation of hourly OMNI solar wind data. J. Geophys. Res. 116, A12107. DOI .

  26. Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F., Vasyliunas, V.: 2006, Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. 111, A07S01. DOI .

  27. Wimmer-Schweingruber, R.F., Crooker, N.U., Balogh, A., Bothmer, V., Forsyth, R.J., Gazis, P., Gosling, J.T., Horbury, T., Kilchenmann, A., Richardson, I.G., Richardson, J.D., Riley, P., Rodriguez, L., Von Steiger, R., Wurz, P., Zurbuchen, T.H.: 2006, Understanding interplanetary coronal mass ejection signatures. Space Sci. Rev. 123(1–3), 177. DOI .

  28. Wu, C.-C., Lepping, R.P.: 2015, Comparisons of characteristics of magnetic clouds and cloud-like structures during 1995 – 2012. Solar Phys. 290(4), 1243. DOI .

  29. Yermolaev, Yu.I., Yermolaev, M.Yu.: 2006, Statistic study on the geomagnetic storm effectiveness of solar and interplanetary events. Adv. Space Res. 37(6), 1175. DOI .

  30. Yermolaev, Yu.I., Yermolaev, M.Yu.: 2010, Solar and interplanetary sources of geomagnetic storms: space weather aspects. Izv., Atmos. Ocean. Phys. 46(7), 799.

  31. Yermolaev, Yu.I., Yermolaev, M.Yu., Nikolaeva, N.S., Lodkina, L.G.: 2007, Interplanetary conditions for CIR-induced and MC-induced geomagnetic storms. Bulg. J. Phys. 34, 128.

  32. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., Yermolaev, M.Yu.: 2009, Catalog of large-scale solar wind phenomena during 1976 – 2000. Cosm. Res. 47(2), 81. Eng. trans. Kosm. Issled., 47(2), 99 – 113. DOI .

  33. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., Yermolaev, M.Yu.: 2010a, Specific interplanetary conditions for CIR-, Sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis. Ann. Geophys. 28, 2177. DOI .

  34. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., Yermolaev, M.Yu.: 2010b, Large-scale solar wind structures: occurrence rate and geoeffectiveness. In: Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 648. DOI .

  35. Yermolaev, Y.I., Nikolaeva, N.S., Lodkina, I.G., Yermolaev, M.Y.: 2012, Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J. Geophys. Res. 117, A00L07. DOI .

  36. Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S., Yermolaev, M.Yu.: 2013, Occurrence rate of extreme magnetic storms. J. Geophys. Res., Space Phys. 118, 4760. DOI .

  37. Yermolaev, Yu.I., Lodkina, I.G., Nikolaeva, N.S., Yermolaev, M.Y.: 2015, Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis. J. Geophys. Res. Space Physics 120(9), 7494. DOI .

  38. Yermolaev, Yu.I., Lodkina, I.G., Nikolaeva, N.S., Yermolaev, M.Yu., Riazantseva, M.O.: 2017, Some problems of identification of large-scale solar wind types and their roles in physics of the magnetosphere. Cosm. Res. 55(3), 178. DOI . Eng. Trans. Kosm. Issled., 55(3), 2017, 189–200.

  39. Yokoyama, N., Kamide, Y.: 1997, Statistical nature of geomagnetic storms. J. Geophys. Res. 102(A7), 14215. DOI .

  40. Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (Dst \(<{-}100\ \text{nT}\)) during 1996 – 2005. J. Geophys. Res. 112, A10102. DOI .

  41. Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123(1–3), 31. DOI .

Download references


We thank the OMNI database team for the opportunity to use data obtained from GSFC/SPDF OMNIWeb ( http://omniweb.gsfc.nasa.gov ). YY is grateful to the SCOSTEP ”Variability of the Sun and Its Terrestrial Impact” (VarSITI) program for support of his participation in the workshop “International Study of Earth-Affecting Solar Transients (ISEST)/MiniMax” in Mexico City, Mexico, 26 – 30 October 2015. This work was supported by the Russian Science Foundation, project 16-12-10062.

Author information

Correspondence to Y. I. Yermolaev.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

N.S. Nikolaeva is deceased.

Earth-affecting Solar Transients

Guest Editors: Jie Zhang, Xochitl Blanco-Cano, Nariaki Nitta, and Nandita Srivastava

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yermolaev, Y.I., Lodkina, I.G., Nikolaeva, N.S. et al. Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta. Sol Phys 292, 193 (2017). https://doi.org/10.1007/s11207-017-1205-1

Download citation


  • Magnetic cloud
  • Ejecta
  • Sheath
  • CIR