Advertisement

Solar Physics

, 292:169 | Cite as

Comprehensive Analysis of the Geoeffective Solar Event of 21 June 2015: Effects on the Magnetosphere, Plasmasphere, and Ionosphere Systems

  • Mirko PiersantiEmail author
  • Tommaso Alberti
  • Alessandro Bemporad
  • Francesco Berrilli
  • Roberto Bruno
  • Vincenzo Capparelli
  • Vincenzo Carbone
  • Claudio Cesaroni
  • Giuseppe Consolini
  • Alice Cristaldi
  • Alfredo Del Corpo
  • Dario Del Moro
  • Simone Di Matteo
  • Ilaria Ermolli
  • Silvano Fineschi
  • Fabio Giannattasio
  • Fabrizio Giorgi
  • Luca Giovannelli
  • Salvatore Luigi Guglielmino
  • Monica Laurenza
  • Fabio Lepreti
  • Maria Federica Marcucci
  • Matteo Martucci
  • Matteo Mergè
  • Michael Pezzopane
  • Ermanno Pietropaolo
  • Paolo Romano
  • Roberta Sparvoli
  • Luca Spogli
  • Marco Stangalini
  • Antonio Vecchio
  • Massimo Vellante
  • Umberto Villante
  • Francesca Zuccarello
  • Balázs Heilig
  • Jan Reda
  • János Lichtenberger
Earth-affecting Solar Transients
Part of the following topical collections:
  1. Earth-affecting Solar Transients

Abstract

A full-halo coronal mass ejection (CME) left the Sun on 21 June 2015 from active region (AR) NOAA 12371. It encountered Earth on 22 June 2015 and generated a strong geomagnetic storm whose minimum Dst value was −204 nT. The CME was associated with an M2-class flare observed at 01:42 UT, located near disk center (N12 E16). Using satellite data from solar, heliospheric, and magnetospheric missions and ground-based instruments, we performed a comprehensive Sun-to-Earth analysis. In particular, we analyzed the active region evolution using ground-based and satellite instruments (Big Bear Solar Observatory (BBSO), Interface Region Imaging Spectrograph (IRIS), Hinode, Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO), Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), covering H\(\upalpha\), EUV, UV, and X-ray data); the AR magnetograms, using data from SDO/Helioseismic and Magnetic Imager (HMI); the high-energy particle data, using the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument; and the Rome neutron monitor measurements to assess the effects of the interplanetary perturbation on cosmic-ray intensity. We also evaluated the 1 – 8 Å soft X-ray data and the \({\sim}\, 1\) MHz type III radio burst time-integrated intensity (or fluence) of the flare in order to predict the associated solar energetic particle (SEP) event using the model developed by Laurenza et al. (Space Weather7(4), 2009). In addition, using ground-based observations from lower to higher latitudes (International Real-time Magnetic Observatory Network (INTERMAGNET) and European Quasi-Meridional Magnetometer Array (EMMA)), we reconstructed the ionospheric current system associated with the geomagnetic sudden impulse (SI). Furthermore, Super Dual Auroral Radar Network (SuperDARN) measurements were used to image the global ionospheric polar convection during the SI and during the principal phases of the geomagnetic storm. In addition, to investigate the influence of the disturbed electric field on the low-latitude ionosphere induced by geomagnetic storms, we focused on the morphology of the crests of the equatorial ionospheric anomaly by the simultaneous use of the Global Navigation Satellite System (GNSS) receivers, ionosondes, and Langmuir probes onboard the Swarm constellation satellites. Moreover, we investigated the dynamics of the plasmasphere during the different phases of the geomagnetic storm by examining the time evolution of the radial profiles of the equatorial plasma mass density derived from field line resonances detected at the EMMA network (\(1.5 < \mathrm{L} < 6.5\)). Finally, we present the general features of the geomagnetic response to the CME by applying innovative data analysis tools that allow us to investigate the time variation of ground-based observations of the Earth’s magnetic field during the associated geomagnetic storm.

Keywords

Solar trigger Flare forecasting Halo CME SEP forecasting Cosmic ray Magnetospheric response to a CME Ground response to a CME Ionospheric response to a CME Ionospheric polar convection 

Notes

Acknowledgements

The results presented in this paper rely on data collected at magnetic observatories. We thank the national institutes that support them and INTERMAGNET for promoting high standards of magnetic observatory practice ( www.intermagnet.org ). We thank the entire PAMELA Collaboration for the data used in this research. This work is supported by the Italian National Program for Antarctic Research (PNRA) Research Project 2013/AC3.08. We thank the national scientific funding agencies of Australia, Canada, China, France, Italy, Japan, South Africa, UK, and USA that funded the radars of the SuperDARN network. The authors also acknowledge the use of the SuperDARN software and web tools made available at Virginia Tech. The authors kindly acknowledge N. Papitashvili and J. King at the National Space Science Data Center of the Goddard Space Flight Center for the use permission of 1-minute OMNI data and the NASA CDAWeb team for making these data available. The Rome neutron monitor (SVIRCO Observatory) is supported by the IAPS/INAF-UNIRoma3 collaboration. This research work is supported by the Italian MIUR-PRIN grant 2012P2HRCR on The active Sun and its effects on Space and Earth climate

Supplementary material

11207_2017_1186_MOESM1_ESM.mp4 (66.8 mb)
(MP4 66.8 MB)

References

  1. Aarons, J.: 1991, The role of the ring current in the generation or inhibition of equatorial f layer irregularities during magnetic storms. Radio Sci. 26(4), 1131.  DOI. ADSCrossRefGoogle Scholar
  2. Adriani, O., Barbarino, G.C., Bazilevskaya, G.A., Bellotti, R., Boezio, M., Bogomolov, E.A., et al.: 2011, Observations of the 2006 December 13 and 14 solar particle events in the 80 MeV n−1 – 3 GeV n−1 range from space with the PAMELA detector. Astrophys. J. 742, 102.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Adriani, O., et al.: 2014, The PAMELA mission: heralding a new era in precision cosmic ray physics. Phys. Rep. 544, 323.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Ahn, B.-H., Akasofu, S.-I., Kamide, Y.: 1983, The Joule heat production rate and the particle energy injection rate as a function of the geomagnetic indices ae and al. J. Geophys. Res., Space 88(A8), 6275.  DOI. ADSCrossRefGoogle Scholar
  5. Alberti, T., Piersanti, M., Vecchio, A., De Michelis, P., Lepreti, F., Carbone, V., Primavera, L.: 2016, Identification of the different magnetic field contributions during a geomagnetic storm in magnetospheric and ground observations. Ann. Geophys. 34(11), 1069.  DOI. ADSCrossRefGoogle Scholar
  6. Alberti, T., Laurenza, M., Cliver, E., Storini, M., Consolini, G., Lepreti, F.: 2017a, Solar activity from 2006 to 2014 and short-term forecasts of solar proton events using the “esperta” model. Astrophys. J. 838, 59.  DOI. ADSCrossRefGoogle Scholar
  7. Alberti, T., Consolini, G., Lepreti, F., Laurenza, M., Vecchio, A., Carbone, V.: 2017b, Timescale separation in the solar wind-magnetosphere coupling during St. Patrick’s Day storms in 2013 and 2015. J. Geophys. Res. 122(4), 4266.  DOI. CrossRefGoogle Scholar
  8. Alfonsi, L., Spogli, L., Pezzopane, M., Romano, V., Zuccheretti, E., De Franceschi, G., Cabrera, M., Ezquer, R.: 2013, Comparative analysis of spread-f signature and gps scintillation occurrences at Tucumán, Argentina. J. Geophys. Res. 118(7), 4483.  DOI. CrossRefGoogle Scholar
  9. Alissandrakis, C.: 1981, On the computation of constant alpha force-free magnetic field. Astron. Astrophys. 100, 197. ADSGoogle Scholar
  10. Araki, T.: 1994, A physical model of the geomagnetic sudden commencement. In: Geoph. Monog. 81, AGU, Washington, 183. Google Scholar
  11. Araki, T., Tsunomura, S., Kikuchi, T.: 2009, Local time variation of the amplitude of geomagnetic sudden commencements (sc) and sc-associated polar cap potential. Earth Planets Space 61(4), e13.  DOI. ADSCrossRefGoogle Scholar
  12. Aschwanden, M.J.: 2002, Particle acceleration and kinematics in solar flares – a synthesis of recent observations and theoretical concepts. Space Sci. Rev. 101(1–2), 1.  DOI. ADSCrossRefGoogle Scholar
  13. Astafyeva, E., Zakharenkova, I., Patrick, A.: 2016, Prompt penetration electric fields and the extreme topside ionospheric response to the June 22 – 23, 2015 geomagnetic storm as seen by the Swarm constellation. Earth Planets Space 68(1), 152.  DOI. ADSCrossRefGoogle Scholar
  14. Baker, D.N., Jaynes, A., Kanekal, S., Foster, J., Erickson, P., Fennell, J., Blake, J., Zhao, H., Li, X., Elkington, S., et al.: 2016a, Highly relativistic radiation belt electron acceleration, transport, and loss: large solar storm events of March and June 2015. J. Geophys. Res. 121(7), 6647.  DOI. CrossRefGoogle Scholar
  15. Baker, D., Jaynes, A., Turner, D., Nakamura, R., Schmid, D., Mauk, B., Cohen, I., Fennell, J., Blake, J., Strangeway, R., et al.: 2016b, A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: magnetospheric multiscale and van Allen probes study of substorm particle injection. Geophys. Res. Lett. 43(12), 6051.  DOI. ADSCrossRefGoogle Scholar
  16. Balan, N., Shiokawa, K., Otsuka, Y., Kikuchi, T., Vijaya Lekshmi, D., Kawamura, S., Yamamoto, M., Bailey, G.: 2010, A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes. J. Geophys. Res. 115(A2).  DOI.
  17. Baransky, L., Borovkov, J., Gokhberg, M., Krylov, S., Troitskaya, V.: 1985, High resolution method of direct measurement of the magnetic field lines’ eigen frequencies. Planet. Space Sci. 33(12), 1369.  DOI. ADSCrossRefGoogle Scholar
  18. Bemporad, A., Pagano, P.: 2015, Uncertainties in polarimetric 3D reconstructions of coronal mass ejections. Astron. Astrophys. 576, A93.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. Berube, D., Moldwin, M.B., Ahn, M.: 2006, Computing magnetospheric mass density from field line resonances in a realistic magnetic field geometry. J. Geophys. Res., Space 111(A8), A08206.  DOI. ADSCrossRefGoogle Scholar
  20. Bibl, K., Reinisch, B.W.: 1978, The universal digital ionosonde. Radio Sci. 13(3), 519.  DOI. ADSCrossRefGoogle Scholar
  21. Blake, J.B., Kolasinski, W.A., Fillius, R.W., Mullen, E.G.: 1992, Injection of electrons and protons with energies of tens of mev into \(\mathrm{l} < 3\) on 24 March 1991. Geophys. Res. Lett. 19(8), 821.  DOI. ADSCrossRefGoogle Scholar
  22. Blanc, M., Richmond, A.: 1980, The ionospheric disturbance dynamo. J. Geophys. Res. 85(A4), 1669.  DOI. ADSCrossRefGoogle Scholar
  23. Bobra, M.G., Couvidat, S.: 2015, Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798, 135.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Bobra, M.G., Sun, X., Hoeksema, J.T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G., Leka, K.: 2014, The helioseismic and magnetic imager (hmi) vector magnetic field pipeline: sharps–space-weather hmi active region patches. Solar Phys. 289(9), 3549.  DOI. ADSCrossRefGoogle Scholar
  25. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock: voyager, helios, and imp 8 observations. J. Geophys. Res. 86(A8), 6673.  DOI. ADSCrossRefGoogle Scholar
  26. Cane, H.V.: 2000, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93(1), 55.  DOI. ADSCrossRefGoogle Scholar
  27. Carpenter, D.L.: 1963, Whistler evidence of a knee in the magnetospheric ionization density profile. J. Geophys. Res. 68(6), 1675.  DOI. ADSMathSciNetCrossRefGoogle Scholar
  28. Carpenter, D., Anderson, R.: 1992, An isee/whistler model of equatorial electron density in the magnetosphere. J. Geophys. Res. 97(A2), 1097.  DOI. ADSCrossRefGoogle Scholar
  29. Carter, B.A., Yizengaw, E., Pradipta, R., Weygand, J.M., Piersanti, M., Pulkkinen, A., Moldwin, M.B., Norman, R., Zhang, K.: 2016, Geomagnetically induced currents around the world during the 17 March 2015 storm. J. Geophys. Res. 121(10), 10,496.  DOI. CrossRefGoogle Scholar
  30. Cesaroni, C., Spogli, L., Alfonsi, L., De Franceschi, G., Ciraolo, L., Monico, J.F.G., Scotto, C., Romano, V., Aquino, M., Bougard, B.: 2015, L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum. J. Space Weather Space Clim. 5, A36.  DOI. CrossRefGoogle Scholar
  31. Chappell, C., Harris, K., Sharp, G.: 1970, The morphology of the bulge region of the plasmasphere. J. Geophys. Res. 75(19), 3848.  DOI. ADSCrossRefGoogle Scholar
  32. Chi, P., Russell, C., Peterson, W., Le, G., Angelopoulos, V., Reeves, G., Moldwin, M., Chun, F.: 2000, Plasmaspheric depletion and refilling associated with the September 25, 1998 magnetic storm observed by ground magnetometers at \(\mathrm{l}= 2\). Geophys. Res. Lett. 27, 633.  DOI. ADSCrossRefGoogle Scholar
  33. Chisham, G., Lester, M., Milan, S.E., Freeman, M.P., Bristow, W.A., Grocott, A., McWilliams, K.A., Ruohoniemi, J.M., Yeoman, T.K., Dyson, P.L., Greenwald, R.A., Kikuchi, T., Pinnock, M., Rash, J.P.S., Sato, N., Sofko, G.J., Villain, J.-P., Walker, A.D.M.: 2007, A decade of the super dual auroral radar network (superdarn): scientific achievements, new techniques and future directions. Surv. Geophys. 28(1), 33.  DOI. ADSCrossRefGoogle Scholar
  34. Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A., Radicella, S.: 2007, Calibration errors on experimental slant total electron content (tec) determined with gps. J. Geod. 81(2), 111.  DOI. ADSCrossRefGoogle Scholar
  35. Consolini, G., De Michelis, P.: 2005, Local intermittency measure analysis of ae index: the directly driven and unloading component. Geophys. Res. Lett. 32(5), L05101.  DOI. ADSCrossRefGoogle Scholar
  36. Cristaldi, A., Guglielmino, S.L., Zuccarello, F., Romano, P., Falco, M., van der Voort, L.R., de la Cruz Rodríguez, J., Ermolli, I., Criscuoli, S.: 2014, Dynamic properties along the neutral line of a delta spot inferred from high-resolution observations. Astrophys. J. 789(2), 162.  DOI. ADSCrossRefGoogle Scholar
  37. Daglis, I., Axford, W., Sarris, E., Livi, S., Wilken, B.: 1997, Particle acceleration in geospace and its association with solar events. Solar Phys. 172(1–2), 287.  DOI. ADSCrossRefGoogle Scholar
  38. Davis, T.N., Sugiura, M.: 1966, Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 71(3), 785.  DOI. ADSCrossRefGoogle Scholar
  39. De Michelis, P., Tozzi, R., Consolini, G.: 2010, Principal components’ features of mid-latitude geomagnetic daily variation. Ann. Geophys. 28(12), 2213.  DOI. ADSCrossRefGoogle Scholar
  40. Dessler, A.J., Parker, E.N.: 1959, Hydromagnetic theory of geomagnetic storms. J. Geophys. Res. 64(12), 2239.  DOI. ADSCrossRefGoogle Scholar
  41. Dmitriev, A., Chao, J.-K., Thomsen, M., Suvorova, A.: 2005, Geosynchronous magnetopause crossings on 29 – 31 October 2003. J. Geophys. Res. 110(A8).  DOI.
  42. Dominici, P., Cander, L.R., Zolesi, B.: 1997, On the origin of medium-period ionospheric waves and their possible modelling: a short review. Ann. Geophys. 40(5), 338.  DOI. Google Scholar
  43. Dungey, J.W.: 1961, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6(2), 47.  DOI. ADSCrossRefGoogle Scholar
  44. Ermolli, I., Giorgi, F., Romano, P., Zuccarello, F., Criscuoli, S., Stangalini, M.: 2014, Fractal and multifractal properties of active regions as flare precursors: a case study based on SOHO/MDI and SDO/HMI observations. Solar Phys. 289, 2525.  DOI. ADSCrossRefGoogle Scholar
  45. Falconer, D.A., Moore, R.L., Gary, G.A.: 2002, Correlation of the coronal mass ejection productivity of solar active regions with measures of their global nonpotentiality from vector magnetograms: baseline results. Astrophys. J. 569, 1016.  DOI. ADS. ADSCrossRefGoogle Scholar
  46. Fejer, B.G., Jensen, J.W., Su, S.-Y.: 2008, Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts. Geophys. Res. Lett. 35(20).  DOI.
  47. Fejer, B.G., Scherliess, L.: 1995, Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances. Geophys. Res. Lett. 22(7), 851.  DOI. ADSCrossRefGoogle Scholar
  48. Feldstein, Y.I., Zaitzev, A.N.: 1968, Quiet and disturbed solar-daily variations of magnetic field at high latitudes during the igy. Tellus 20(2), 338.  DOI. ADSCrossRefGoogle Scholar
  49. Forbush, S.E.: 1937, On diurnal variation in cosmic-ray intensity. Terr. Magn. Atmos. Electr. 42(1), 1.  DOI. CrossRefGoogle Scholar
  50. Freeland, S., Handy, B.: 1998, Data analysis with the solarsoft system. Solar Phys. 182(2), 497.  DOI. ADSCrossRefGoogle Scholar
  51. Friis-Christensen, E., Lühr, H., Knudsen, D., Haagmans, R.: 2008, Swarm – an Earth observation mission investigating geospace. Adv. Space Res. 41(1), 210.  DOI. ADSCrossRefGoogle Scholar
  52. Georgoulis, M.K.: 2005, A new technique for a routine azimuth disambiguation of solar vector magnetograms. Astrophys. J. Lett. 629(1), L69.  DOI. ADSCrossRefGoogle Scholar
  53. Georgoulis, M.K., LaBonte, B.J.: 2004, Vertical Lorentz force and cross-field currents in the photospheric magnetic fields of solar active regions. Astrophys. J. 615(2), 1029.  DOI. ADSCrossRefGoogle Scholar
  54. Getley, I., Duldig, M., Smart, D., Shea, M.: 2005, The applicability of model based aircraft radiation dose estimates. Adv. Space Res. 36(9), 1638.  DOI. ADSCrossRefGoogle Scholar
  55. Giacalone, J., Kóta, J.: 2006, Acceleration of solar-energetic particles by shocks. Space Sci. Rev. 124(1–4), 277.  DOI. ADSGoogle Scholar
  56. Giorgi, F., Ermolli, I., Romano, P., Stangalini, M., Zuccarello, F., Criscuoli, S.: 2015, The signature of flare activity in multifractal measurements of active regions observed by SDO/HMI. Solar Phys. 290, 507. ADSCrossRefGoogle Scholar
  57. Gonzalez, W.D., Tsurutani, B.T., de Gonzalez, A.L.C.: 1999, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88(3–4), 529.  DOI. ADSCrossRefGoogle Scholar
  58. Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res. 99(A4), 5771.  DOI. ADSCrossRefGoogle Scholar
  59. Gosain, S., Venkatakrishnan, P.: 2010, The evolution of the twist shear and dip shear during x-class flare of 2006 December 13: Hinode observations. Astrophys. J. Lett. 720(2), L137.  DOI. ADSCrossRefGoogle Scholar
  60. Hoeksema, J.T., Liu, Y., Hayashi, K., Sun, X., Schou, J., Couvidat, S., Norton, A., Bobra, M., Centeno, R., Leka, K.D., Barnes, G., Turmon, M.: 2014, The helioseismic and magnetic imager (hmi) vector magnetic field pipeline: overview and performance. Solar Phys. 289(9), 3483.  DOI. ADSCrossRefGoogle Scholar
  61. Hoff, J., Townsend, L., Zapp, E.: 2004, Interplanetary crew doses and dose equivalents: variations among different bone marrow and skin sites. Adv. Space Res. 34(6), 1347.  DOI. ADSCrossRefGoogle Scholar
  62. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. A, Math. Phys. 454(1971), 903.  DOI. ADSMathSciNetzbMATHCrossRefGoogle Scholar
  63. Huang, C.-S., Sazykin, S., Chau, J.L., Maruyama, N., Kelley, M.C.: 2007, Penetration electric fields: efficiency and characteristic time scale. J. Atmos. Solar-Terr. Phys. 69(10), 1135.  DOI. ADSCrossRefGoogle Scholar
  64. Hundhausen, A.J.: 1993, Sizes and locations of coronal mass ejections: smm observations from 1980 and 1984-1989. J. Geophys. Res., Space 98(A8), 13177.  DOI. ADSCrossRefGoogle Scholar
  65. Hunsucker, R.D.: 1992, Auroral and polar-cap ionospheric effects on radio propagation. IEEE Antennas Propag. 40(7), 818.  DOI. ADSCrossRefGoogle Scholar
  66. Iucci, N., Levitin, A., Belov, A., Eroshenko, E., Ptitsyna, N., Villoresi, G., Chizhenkov, G., Dorman, L., Gromova, L., Parisi, M., et al.: 2005, Space weather conditions and spacecraft anomalies in different orbits. Space Weather 3(1).  DOI.
  67. Jiang, C., Wu, S., Feng, X., Hu, Q.: 2016, Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption. Nat. Commun. 7.  DOI.
  68. Jing, J., Xu, Y., Cao, W., Liu, C., Gary, D., Wang, H.: 2016, Unprecedented fine structure of a solar flare revealed by the 1.6 m new solar telescope. Sci. Rep. 6, 24319.  DOI. ADSCrossRefGoogle Scholar
  69. Joselyn, J.A., Tsurutani, B.T.: 1990, Geomagnetic sudden impulses and storm sudden commencements: a note on terminology. Eos, Trans. Am. Geophys. Union 71(47), 1808.  DOI. ADSCrossRefGoogle Scholar
  70. Kale, Z., Mann, I., Waters, C., Goldstein, J., Menk, F., Ozeke, L.: 2007, Ground magnetometer observation of a cross-phase reversal at a steep plasmapause. J. Geophys. Res. 112(A10).  DOI.
  71. Kamide, Y., Kokubun, S.: 1996, Two-component auroral electrojet: importance for substorm studies. J. Geophys. Res. 101(A6), 13027.  DOI. ADSCrossRefGoogle Scholar
  72. Kennel, C.F., Edmiston, J.P., Russell, C.T., Scarf, F.L., Coroniti, F.V., Smith, E.J., Tsurutani, B.T., Scudder, J.D., Feldman, W.C., Anderson, R.R.: 1984a, Structure of the November 12, 1978, quasi-parallel interplanetary shock. J. Geophys. Res. 89, 5436.  DOI. ADS. ADSCrossRefGoogle Scholar
  73. Kennel, C.F., Edmiston, J.P., Russell, C.T., Scarf, F.L., Coroniti, F.V., Smith, E.J., Tsurutani, B.T., Scudder, J.D., Feldman, W.C., Anderson, R.R.: 1984b, Structure of the November 12, 1978, quasi-parallel interplanetary shock. J. Geophys. Res. 89, 5436.  DOI. ADS. ADSCrossRefGoogle Scholar
  74. Kocharov, L., Torsti, J.: 2002, Hybrid solar energetic particle events observed on board SOHO. Solar Phys. 207(1), 149.  DOI. ADSCrossRefGoogle Scholar
  75. Kokubun, S.: 1983, Characteristics of storm sudden commencement at geostationary orbit. J. Geophys. Res., Space 88(A12), 10025.  DOI. ADSCrossRefGoogle Scholar
  76. Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., et al.: 2007, The hinode (solar-b) mission: an overview. Solar Phys. 243(1), 3.  DOI. ADSCrossRefGoogle Scholar
  77. Laurenza, M., Cliver, E., Hewitt, J., Storini, M., Ling, A., Balch, C., Kaiser, M.: 2009, A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather 7(4).  DOI.
  78. Lee, D.-Y., Lyons, L.R.: 2004, Geosynchronous magnetic field response to solar wind dynamic pressure pulse. J. Geophys. Res., Space 109(A4), A04201.  DOI. ADSGoogle Scholar
  79. Leka, K.D., Barnes, G.: 2003, Photospheric magnetic field properties of flaring versus flare-quiet active regions. I. Data, general approach, and sample results. Astrophys. J. 595, 1277.  DOI. ADS. ADSCrossRefGoogle Scholar
  80. Leka, K.D., Barnes, G.: 2007, Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophys. J. 656, 1173.  DOI. ADS. ADSCrossRefGoogle Scholar
  81. Lemaire, J.F., Gringauz, K.I., Carpenter, D.L., Bassolo, V.: 2005, The Earth’s Plasmasphere, Cambridge University Press, Cambridge, 18. Google Scholar
  82. Lemen, J.R., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., et al.: 2011, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). In: The Solar Dynamics Observatory, Springer, Berlin, 17. CrossRefGoogle Scholar
  83. Li, X., Roth, I., Temerin, M., Wygant, J.R., Hudson, M.K., Blake, J.B.: 1993, Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC. Geophys. Res. Lett. 20(22), 2423.  DOI. ADSCrossRefGoogle Scholar
  84. Li, X., Baker, D., Elkington, S., Temerin, M., Reeves, G., Belian, R., Blake, J., Singer, H., Peria, W., Parks, G.: 2003, Energetic particle injections in the inner magnetosphere as a response to an interplanetary shock. J. Atmos. Solar-Terr. Phys. 65(2), 233.  DOI. ADSCrossRefGoogle Scholar
  85. Lichtenberger, J., Clilverd, M.A., Heilig, B., Vellante, M., Manninen, J., Rodger, C.J., Collier, A.B., Jørgensen, A.M., Reda, J., Holzworth, R.H., Friedel, R., Simon-Wedlund, M.: 2013, The plasmasphere during a space weather event: first results from the plasmon project. J. Space Weather Space 3, A23.  DOI. ADSCrossRefGoogle Scholar
  86. Lites, B., Casini, R., Garcia, J., Socas-Navarro, H.: 2007, A suite of community tools for spectro-polarimetric analysis. Mem. Soc. Astron. Ital. 78, 148. ADSGoogle Scholar
  87. Lites, B., Akin, D., Card, G., Cruz, T., Duncan, D., Edwards, C., Elmore, D., Hoffmann, C., Katsukawa, Y., Katz, N., et al.: 2013, The hinode spectro-polarimeter. Solar Phys. 283(2), 579.  DOI. ADSCrossRefGoogle Scholar
  88. Liu, Y.D., Hu, H., Wang, R., Yang, Z., Zhu, B., Liu, Y.A., Luhmann, J.G., Richardson, J.D.: 2015, Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic storm intensity and variability. Astrophys. J. 809(2), L34.  DOI. ADSCrossRefGoogle Scholar
  89. Lorentzen, K., Mazur, J., Looper, M., Fennell, J., Blake, J.: 2002, Multisatellite observations of mev ion injections during storms. J. Geophys. Res. 107(A9).  DOI.
  90. Lyu, L.-H.: 2002, Space Weather Study Using Multipoint Techniques 12, Elsevier, Amsterdam, 22. Google Scholar
  91. Mannucci, A., Tsurutani, B., Iijima, B., Komjathy, A., Saito, A., Gonzalez, W., Guarnieri, F., Kozyra, J., Skoug, R.: 2005, Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween storms”. Geophys. Res. Lett. 32(12).  DOI.
  92. Menk, F., Kale, Z., Sciffer, M., Robinson, P., Waters, C., Grew, R., Clilverd, M., Mann, I.: 2014, Remote sensing the plasmasphere, plasmapause, plumes and other features using ground-based magnetometers. J. Space Weather Space Clim. 4, A34.  DOI. ADSCrossRefGoogle Scholar
  93. Moldwin, M.B.: 1997, Outer plasmaspheric plasma properties: what we know from satellite data. Space Sci. Rev. 80(1), 181.  DOI. ADSCrossRefGoogle Scholar
  94. Moran, T.G., Davila, J.M.: 2004, Three-dimensional polarimetric imaging of coronal mass ejections. Science 305, 66.  DOI. ADS. ADSCrossRefGoogle Scholar
  95. Muella, M., Kherani, E., de Paula, E., Cerruti, A., Kintner, P., Kantor, I., Mitchell, C., Batista, I., Abdu, M.: 2010, Scintillation-producing Fresnel-scale irregularities associated with the regions of steepest tec gradients adjacent to the equatorial ionization anomaly. J. Geophys. Res. 115(A3).  DOI.
  96. Nicolls, M., Kelley, M., Vlasov, M., Sahai, Y., Chau, J., Hysell, D., Fagundes, P., Becker-Guedes, F., Lima, W.: 2006, Observations and modeling of post-midnight uplifts near the magnetic equator. Ann. Geophys. 24(5), 1317.  DOI. ADSCrossRefGoogle Scholar
  97. O’Brien, T., Moldwin, M.: 2003, Empirical plasmapause models from magnetic indices. Geophys. Res. Lett. 30(4).  DOI.
  98. Park, C.: 1973, Whistler observations of the depletion of the plasmasphere during a magnetospheric substorm. J. Geophys. Res. 78(4), 672.  DOI. ADSCrossRefGoogle Scholar
  99. Park, C.G.: 1974, Some features of plasma distribution in the plasmasphere deduced from Antarctic whistlers. J. Geophys. Res. 79(1), 169.  DOI. ADSMathSciNetCrossRefGoogle Scholar
  100. Patel, V.L., Coleman, P.J.: 1970, Sudden impulses in the magnetosphere observed at synchronous orbit. J. Geophys. Res. 75(34), 7255.  DOI. ADSCrossRefGoogle Scholar
  101. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The solar dynamics observatory (sdo). Solar Phys. 275(1), 3.  DOI. ADSCrossRefGoogle Scholar
  102. Pesses, M.E., Tsurutani, B.T., Smith, E.J., van Allen, J.A.: 1979, Acceleration of energetic protons by interplanetary shocks. J. Geophys. Res. 84, 7297.  DOI. ADS. ADSCrossRefGoogle Scholar
  103. Petrie, G.: 2012, The abrupt changes in the photospheric magnetic and Lorentz force vectors during six major neutral-line flares. Astrophys. J. 759(1), 50.  DOI. ADSCrossRefGoogle Scholar
  104. Piersanti, M., Villante, U.: 2016, On the discrimination between magnetospheric and ionospheric contributions on the ground manifestation of sudden impulses. J. Geophys. Res., Space 121(7), 6674.  DOI. ADSCrossRefGoogle Scholar
  105. Piersanti, M., Villante, U., Waters, C., Coco, I.: 2012, The 8 June 2000 ulf wave activity: a case study. J. Geophys. Res., Space 117(A2).  DOI.
  106. Prölss, G.: 1995, Ionospheric F-Region Storms, Handbook of Atmospheric Electrodynamics 2, 195. Google Scholar
  107. Reames, D.V.: 1999, Particle acceleration at the sun and in the heliosphere. Space Sci. Rev. 90(3–4), 413.  DOI. ADSCrossRefGoogle Scholar
  108. Reiff, P., Daou, A., Sazykin, S., Nakamura, R., Hairston, M., Coffey, V., Chandler, M., Anderson, B., Russell, C., Welling, D., et al.: 2016, Multispacecraft observations and modeling of the 22/23 June 2015 geomagnetic storm. Geophys. Res. Lett. 43(14), 7311.  DOI. ADSCrossRefGoogle Scholar
  109. Reinisch, B.W., Galkin, I.A.: 2011, Global ionospheric radio observatory (giro). Earth Planets Space 63(4), 377.  DOI. ADSCrossRefGoogle Scholar
  110. Rishbeth, H.: 1971, Polarization fields produced by winds in the equatorial f-region. Planet. Space Sci. 19(3), 357.  DOI. ADSCrossRefGoogle Scholar
  111. Romano, P., Zuccarello, F.P., Guglielmino, S.L., Zuccarello, F.: 2014, Evolution of the magnetic helicity flux during the formation and eruption of flux ropes. Astrophys. J. 794(2), 118.  DOI. ADSCrossRefGoogle Scholar
  112. Ruohoniemi, J.M., Baker, K.B.: 1998, Large-scale imaging of high-latitude convection with super dual auroral radar network hf radar observations. J. Geophys. Res., Space 103(A9), 20797.  DOI. ADSCrossRefGoogle Scholar
  113. Ruohoniemi, J.M., Greenwald, R.A.: 1996, The response of high-latitude convection to a sudden southward imf turning. Geophys. Res. Lett. 25(15), 2913.  DOI. ADSCrossRefGoogle Scholar
  114. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The helioseismic and magnetic imager (hmi) investigation for the solar dynamics observatory (sdo). Solar Phys. 275(1), 207.  DOI. ADSCrossRefGoogle Scholar
  115. Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655, L117.  DOI. ADS. ADSCrossRefGoogle Scholar
  116. Schrijver, C.J.: 2009, Driving major solar flares and eruptions: a review. Adv. Space Res. 43, 739.  DOI. ADS. ADSCrossRefGoogle Scholar
  117. Schrijver, C.J., DeRosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212(1), 165.  DOI. ADSCrossRefGoogle Scholar
  118. Sckopke, N.: 1966, A general relation between the energy of trapped particles and the disturbance field near the Earth. J. Geophys. Res. 71(13), 3125.  DOI. ADSCrossRefGoogle Scholar
  119. Shepherd, S., Greenwald, R., Ruohoniemi, J.: 2002, Cross polar cap potentials measured with super dual auroral radar network during quasi-steady solar wind and interplanetary magnetic field conditions. J. Geophys. Res. 107(A7).  DOI.
  120. Shimizu, T., Lites, B.W., Bamba, Y.: 2014, High-speed photospheric material flow observed at the polarity inversion line of a \(\delta\)-type sunspot producing an X5.4 flare on 2012 March 7. Publ. Astron. Soc. Japan 66, S14.  DOI. ADS. ADSCrossRefGoogle Scholar
  121. Shue, J.-H., Song, P., Russell, C., Steinberg, J., Chao, J., Zastenker, G., Vaisberg, O., Kokubun, S., Singer, H., Detman, T., et al.: 1998, Magnetopause location under extreme solar wind conditions. J. Geophys. Res. 103(A8), 17691.  DOI. ADSCrossRefGoogle Scholar
  122. Smith, E.J., Tsurutani, B.T., Rosenberg, R.L.: 1978, Observations of the interplanetary sector structure up to heliographic latitudes of \(16^{\circ}\): pioneer 11. J. Geophys. Res., Space 83(A2), 717.  DOI. ADSCrossRefGoogle Scholar
  123. Spogli, L., Cesaroni, C., Di Mauro, D., Pezzopane, M., Alfonsi, L., Musicò, E., Povero, G., Pini, M., Dovis, F., Romero, R., et al.: 2016, Formation of ionospheric irregularities over southeast Asia during the 2015 St. Patrick’s Day storm. J. Geophys. Res.  DOI. Google Scholar
  124. Suvorova, A., Dmitriev, A., Chao, J.-K., Thomsen, M., Yang, Y.-H.: 2005, Necessary conditions for geosynchronous magnetopause crossings. J. Geophys. Res. 110(A1).  DOI.
  125. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The solar optical telescope for the hinode mission: an overview. Solar Phys. 249(2), 167.  DOI. ADSCrossRefGoogle Scholar
  126. Tsurutani, B.T., Lakhina, G.S.: 2014, An extreme coronal mass ejection and consequences for the magnetosphere and Earth. Geophys. Res. Lett. 41(2), 287.  DOI. ADSCrossRefGoogle Scholar
  127. Tsurutani, B.T., Lin, R.P.: 1985, Acceleration of greater than 47 keV ions and greater than 2 keV electrons by interplanetary shocks at 1 AU. J. Geophys. Res. 90, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  128. Tsurutani, B.T., Zhou, X.-Y.: 2003, Interplanetary shock triggering of substorms: wind and polar. Adv. Space Res. 31(4), 1063.  DOI. ADSCrossRefGoogle Scholar
  129. Tsurutani, B.T., Smith, E.J., Pyle, K.R., Simpson, J.A.: 1982, Energetic protons accelerated at corotating shocks – pioneer 10 and 11 observations from 1 to 6 AU. J. Geophys. Res. 87, 7389.  DOI. ADS. ADSCrossRefGoogle Scholar
  130. Tsurutani, B.T., Gonzalez, W.D., Tang, F., Akasofu, S.I., Smith, E.J.: 1988, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978 – 1979). J. Geophys. Res. 93(A8), 8519.  DOI. ADSCrossRefGoogle Scholar
  131. Tsurutani, B., Judge, D., Guarnieri, F., Gangopadhyay, P., Jones, A., Nuttall, J., Zambon, G., Didkovsky, L., Mannucci, A., Iijima, B., et al.: 2005, The October 28, 2003 extreme euv solar flare and resultant extreme ionospheric effects: comparison to other Halloween events and the Bastille day event. Geophys. Res. Lett. 32(3).  DOI.
  132. Tsurutani, B., Mannucci, A., Iijima, B., Abdu, M.A., Sobral, J.H.A., Gonzalez, W., Guarnieri, F., Tsuda, T., Saito, A., Yumoto, K., et al.: 2004, Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J. Geophys. Res. 109(A8).  DOI.
  133. Tsurutani, B., Verkhoglyadova, O., Mannucci, A., Lakhina, G., Li, G., Zank, G.: 2009, A brief review of “solar flare effects” on the ionosphere. Radio Sci. 44(1).  DOI.
  134. Tsurutani, B., Verkhoglyadova, O., Mannucci, A., Saito, A., Araki, T., Yumoto, K., Tsuda, T., Abdu, M., Sobral, J., Gonzalez, W., et al.: 2008, Prompt penetration electric fields (ppefs) and their ionospheric effects during the great magnetic storm of 30 – 31 October 2003. J. Geophys. Res. 113(A5).  DOI.
  135. Tsyganenko, N.: 2002, A model of the near magnetosphere with a dawn-dusk asymmetry 1. Mathematical structure. J. Geophys. Res. 107(A8).  DOI.
  136. Tsyganenko, N.A., Sitnov, M.I.: 2005, Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J. Geophys. Res. 110(A3), A03208.  DOI. ADSCrossRefGoogle Scholar
  137. Tulasi Ram, S., Yokoyama, T., Otsuka, Y., Shiokawa, K., Sripathi, S., Veenadhari, B., Heelis, R., Ajith, K., Gowtam, V., Gurubaran, S., et al.: 2016, Duskside enhancement of equatorial zonal electric field response to convection electric fields during the St. Patrick’s Day storm on 17 march 2015. J. Geophys. Res.  DOI.
  138. Valtonen, E.: 2005, Space weather effects on technology. In: Space Weather, Springer, Berlin, 241. Google Scholar
  139. Vellante, M., Förster, M.: 2006, Inference of the magnetospheric plasma mass density from field line resonances: a test using a plasmasphere model. J. Geophys. Res. 111(A11).  DOI.
  140. Vellante, M., Piersanti, M., Pietropaolo, E.: 2014, Comparison of equatorial plasma mass densities deduced from field line resonances observed at ground for dipole and igrf models. J. Geophys. Res. 119(4), 2623. 2013JA019568.  DOI. CrossRefGoogle Scholar
  141. Vellante, M., Piersanti, M., Heilig, B., Reda, J., Del Corpo, A.: 2014, Magnetospheric plasma density inferred from field line resonances: effects of using different magnetic field models. 2014 XXXIth URSI General Assembly Scien. Symp., 1.  DOI. Google Scholar
  142. Venkatesh, K., Tulasi Ram, S., Fagundes, P., Seemala, G.K., Batista, I.: 2017, Electrodynamic disturbances in the brazilian equatorial and low-latitude ionosphere on St. Patrick’s Day storm of 17 March 2015. J. Geophys. Res. 122(4), 4553.  DOI. CrossRefGoogle Scholar
  143. Villante, U., Piersanti, M.: 2008, An analysis of sudden impulses at geosynchronous orbit. J. Geophys. Res. 113(A8), A08213.  DOI. ADSCrossRefGoogle Scholar
  144. Villante, U., Piersanti, M.: 2009, Analysis of geomagnetic sudden impulses at low latitudes. J. Geophys. Res. 114(A6), A06209.  DOI. ADSCrossRefGoogle Scholar
  145. Wang, H., Ewell Jr, M., Zirin, H., Ai, G.: 1994, Vector magnetic field changes associated with x-class flares. Astrophys. J. 424, 436.  DOI. ADSCrossRefGoogle Scholar
  146. Wanliss, J.A., Showalter, K.M.: 2006, High-resolution global storm index: dst versus sym-h. J. Geophys. Res. 111(A2), A02202.  DOI. ADSCrossRefGoogle Scholar
  147. Waters, C.L., Menk, F.W., Fraser, B.J.: 1991, The resonance structure of low latitude pc3 geomagnetic pulsations. Geophys. Res. Lett. 18(12), 2293.  DOI. ADSCrossRefGoogle Scholar
  148. Welsch, B.T., Fisher, G.H., Sun, X.: 2013, A magnetic calibration of photospheric Doppler velocities. Astrophys. J. 765, 98.  DOI. ADS. ADSCrossRefGoogle Scholar
  149. Woodman, R.F.: 1970, Vertical drift velocities and East–West electric fields at the magnetic equator. J. Geophys. Res. 75(31), 6249.  DOI. ADSCrossRefGoogle Scholar
  150. Zhao, B., Wan, W., Liu, L., Igarashi, K., Nakamura, M., Paxton, L., Su, S.-Y., Li, G., Ren, Z.: 2008, Anomalous enhancement of ionospheric electron content in the Asian–Australian region during a geomagnetically quiet day. J. Geophys. Res. 113(A11).  DOI.
  151. Zhou, X., Tsurutani, B.T.: 2001, Interplanetary shock triggering of nightside geomagnetic activity: substorms, pseudobreakups, and quiescent events. J. Geophys. Res. 106(A9), 18957.  DOI. ADSCrossRefGoogle Scholar
  152. Žic, T., Vršnak, B., Temmer, M.: 2015, Heliospheric propagation of coronal mass ejections: drag-based model fitting. Astrophys. J. 218, 32.  DOI. ADS. CrossRefGoogle Scholar
  153. Zong, Q.-G., Reinisch, B., Song, P., Wei, Y., Galkin, I.: 2010, Dayside ionospheric response to the intense interplanetary shocks–solar wind discontinuities: observations from the digisonde global ionospheric radio observatory. J. Geophys. Res. 115(A6).  DOI.
  154. Zuccarello, F., Romano, P., Farnik, F., Karlicky, M., Contarino, L., Battiato, V., Guglielmino, S., Comparato, M., Ugarte-Urra, I.: 2009, The x17. 2 flare occurred in noaa 10486: an example of filament destabilization caused by a domino effect. Astron. Astrophys. 493(2), 629.  DOI. ADSCrossRefGoogle Scholar
  155. Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31.  DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Mirko Piersanti
    • 1
    • 12
    Email author return OK on get
  • Tommaso Alberti
    • 2
  • Alessandro Bemporad
    • 10
  • Francesco Berrilli
    • 3
  • Roberto Bruno
    • 4
  • Vincenzo Capparelli
    • 5
  • Vincenzo Carbone
    • 2
  • Claudio Cesaroni
    • 15
  • Giuseppe Consolini
    • 4
  • Alice Cristaldi
    • 9
  • Alfredo Del Corpo
    • 1
  • Dario Del Moro
    • 3
  • Simone Di Matteo
    • 1
    • 12
  • Ilaria Ermolli
    • 9
  • Silvano Fineschi
    • 10
  • Fabio Giannattasio
    • 4
  • Fabrizio Giorgi
    • 9
  • Luca Giovannelli
    • 3
  • Salvatore Luigi Guglielmino
    • 5
  • Monica Laurenza
    • 4
  • Fabio Lepreti
    • 2
  • Maria Federica Marcucci
    • 4
  • Matteo Martucci
    • 11
    • 3
  • Matteo Mergè
    • 3
  • Michael Pezzopane
    • 15
  • Ermanno Pietropaolo
    • 1
  • Paolo Romano
    • 14
  • Roberta Sparvoli
    • 3
  • Luca Spogli
    • 15
    • 16
  • Marco Stangalini
    • 9
  • Antonio Vecchio
    • 6
  • Massimo Vellante
    • 1
  • Umberto Villante
    • 1
    • 12
  • Francesca Zuccarello
    • 5
  • Balázs Heilig
    • 7
  • Jan Reda
    • 8
  • János Lichtenberger
    • 13
  1. 1.Department of Physical and Chemical SciencesUniversity of L’AquilaL’AquilaItaly
  2. 2.Department of PhysicsUniversity of CalabriaCosenzaItaly
  3. 3.Physics DepartmentUniversity of Rome “Torvergata”RomeItaly
  4. 4.INAFIstituto di Astrofisica e Planetologia SpazialiRomeItaly
  5. 5.Department of Physics and AstronomyUniversity of CataniaCataniaItaly
  6. 6.LESIAObservatoire de ParisMeudonFrance
  7. 7.Geological and Geophysical Institute of HungaryTihanyHungary
  8. 8.Institute of GeophysicsPASWarsaw, BelskPoland
  9. 9.INAFOsservatorio Astronomico di RomaRomeItaly
  10. 10.INAFOsservatorio Astrofisico di TorinoTurinItaly
  11. 11.INFNLaboratori Nazionali di FrascatiFrascatiItaly
  12. 12.Consorzio Area di Ricerca in AstrogeofisicaL’AquilaItaly
  13. 13.Space Research Group, Department of Geophysics and Space SciencesEötvös UniversityBudapestHungary
  14. 14.INAFOsservatorio Astrofisico di CataniaCataniaItaly
  15. 15.Istituto Nazionale di Geofisica e VulcanologiaRomeItaly
  16. 16.SpacEarth TechnologyRomeItaly

Personalised recommendations